Механизмы клеточного деления. Регуляция процесса пролиферации Регуляция процессов пролиферации таблица


В. Флемминг сформулировал представление о митозе как циклическом процессе, кульминационным моментом которого является расщепление каждой хромосомы на две дочерние хромосомы и их распределение по двум вновь образующимся клеткам. У одноклеточных организмов продолжительность существования клетки совпадает с продолжительностью жизни организма. В организме многоклеточных животных и растений различаются две группы клеток: постоянно делящиеся (пролиферирующие) и покоящиеся (статичные). Совокупность пролиферирующих клеток образует пролиферативный пул.

В группах пролиферирующих клеток интервал между завершением митоза в исходной клетке и завершением митоза в ее дочерней клетке называется клеточный цикл. Клеточный цикл контролируется определенными генами. Полный клеточный цикл включает интерфазу и собственно митоз. В свою очередь, собственно митоз включает кариокинез (деление ядра) и цитокинез (деление цитоплазмы).

Клеточный цикл состоит из интерфазы (период вне деления) и самого клеточного деления.

Если клетка собирается когда-нибудь делиться, то интерфаза будет состоять из 3-х периодов. Сразу после выхода из митоза клетка вступает в пресинтетический или G1-период, далее переходит в синтетический или S-период и потом - в постсинтетический или G2-период. G2-периодом заканчивается интерфаза и после нее клетка вступает в следующий митоз.

Если клетка не планирует снова делиться, то она как бы выходит из клеточного цикла и вступает в период покоя, или G0-период. Если клетка, находящаяся в G0-периоде, снова захочет делиться, то она выходит из G0-периода и вступает в G1-период. Таким образом, если клетка находится в G1-периоде, то она обязательно рано или поздно будет делиться, не говоря уже о S- и G2-периодах, когда клетка в ближайшее время обязательно вступит в митоз.

G1-период может продолжаться от 2–4 ч до нескольких недель или даже месяцев. Продолжительность S-периода варьирует от 6 до 8 ч, а G2-периода - от нескольких часов до получаса. Длительность митоза - от 40 до 90 минут. Причем самой короткой фазой митоза можно считать анафазу. Она занимает всего несколько минут.

G1-период характеризуется высокой синтетической активностью, в течение которого клетка должна увеличить свой объем до размера материнской клетки, а значит, и количество органелл, различных веществ. Непонятно почему, но клетка прежде чем вступить в следующий митоз должна иметь размер равный материнской клетке. И пока этого не произойдет, клетка продолжает оставаться в G1-периоде. Видимо, единственным исключением из этого является дробление, при котором бластомеры делятся, не достигая размеров исходных клеток.

В конце G1-периода принято различать специальный момент, называемый R-точкой (точка рестрикции, R-пункт), после которого клетка обязательно в течение нескольких часов (обычно 1–2) вступает в S-период. Период времени между R-точкой и началом S-периода можно рассматривать в качестве подготовительного для перехода в S-период.

Самый главный процесс, который идет в S-периоде - это удвоение или редупликация ДНК. Все остальные реакции, происходящие в это время, направлены на обеспечение синтеза ДНК - синтез гистоновых белков, синтез ферментов, регулирующих и обеспечивающих синтез нуклеотидов и образование новых нитей ДНК.

Сущность G2-периода не совсем понятна в настоящее время, однако в этот период происходит образование веществ, необходимых для самого процесса митоза (белки микротрубочек веретена деления, АТФ).

Прохождение клетки по всем периодам клеточного цикла строго контролируется специальными регуляторными молеулами, которые обеспечивают:

1) прохождение клетки по определенному периоду клеточного цикла
2) переход из одного периода в другой.

Причем прохождение по каждому периоду, а также переход из одного периода в другой контролируется различными веществами. Одними из участников регуляторной системы являются циклин-зависимыми протеинкиназами (cdc). Именно они регулируют активность генов, ответственных за прохождение клетки по тому или иному периоду клеточного цикла. Имеется несколько их разновидностей, и все они присутствуют в клетке постоянно независимо от периода клеточного цикла. Но для работы циклин-зависимых протеинкиназ требуются специальные активаторы. Ими являются циклины. Циклины присутствуют в клетках не постоянно, а то появляются, то исчезают. Это обусловлено их синтезом и быстрым разрушением. Известно много типов циклинов. Синтез каждого циклина происходит в строго определенный период клеточного цикла. В один период образуются одни циклины, а в другой - другие. Таким образом, система "циклины - циклин-зависимые протеинкиназы" управляет движением клетки по клеточному циклу.

Регуляция клеточного цикла

По пролиферативному потенциалу различают три группы клеток:

1. Статичные, или непролиферирующие клетки – не размножаются при нормальных физиологических условиях. Хроматин конденсирован настолько, что исключается транскрипционная активность ядра (сегментоядерные лейкоциты, тучные клетки, эритроциты). К статичным клеткам относят также миоциты и нейроны, в которых хроматин деконденсирован, что связано с выполнением ими специфических функций в отсутствие пролиферации.

2. Растущие, или медленно пролиферирующие клетки с низкой митотической активностью (лимфоциты, хондроциты, гепатоциты).

3. Обновляющиеся клеточные популяции, в которых высокий уровень пролиферации компенсируется гибелью клеток. В этих популяциях основная масса клеток претерпевает терминальную (окончательную) дифференцировку и погибает (кроветворная система). Стволовые клетки на всем протяжении своей жизни сохраняют пролиферативный потенциал.

Особую группу постоянно пролиферирующих клеток составляют раковые клетки. Это вечно молодые, иммортализированные («бессмертные») клетки.

Существует эндогенная (внутренняя) и экзогенная (внешняя) регуляция пролиферации. Факторы, подавляющие пролиферацию, называются ингибиторами пролиферации. Факторы, повышающие вероятность пролиферации, называются стимуляторами пролиферации, или митогенами. Митогенами могут быть определенные пептиды.

Пролиферация является завершающей фазой развития воспаления, обеспечивающей репаративную регенерацию тканей на месте очага альтерации.

Пролиферация развивается с самого начала воспаления наряду с явлениями альтерации и экссудации.

Размножение клеточных элементов начинается по периферии зоны воспаления, в то время как в центре очага могут еще прогрессировать явления альтерации и некроза.

Полного развития пролиферация соединительнотканных и органоспецифическихклеточных элементов достигает после "очистки" зоны повреждения от клеточного детрита и инфекционных возбудителей воспаления тканевыми макрофагами и нейтрофилами. В связи с этим следует отметить, что процессу пролиферации предшествует образование нейтрофильного и моноцитарного барьеров, которые формируются по периферии зоны альтерации.

Восстановление и замещение поврежденных тканей начинается с выхода из сосудов молекул фибриногена и образования фибрина, который формирует своеобразную сетку, каркас для последующего клеточного размножения. Уже по этому каркасу распределяются в очаге репарации быстро образующиеся фибробласты.

Деление, рост и перемещение фибробластов возможно только после их связывания с фибрином или коллагеновыми волокнами. Эта связь обеспечивается особым белком - фибронектином.

Размножение фибробластов начинается по периферии зоны воспаления, обеспечивая формирование фибробластического барьера. Сначала фибробласты - незрелые и не обладают способностью синтезировать коллаген. Созреванию предшествует внутренняя структурно-функциональная перестройка фибробластов: гипертрофия ядра и ядрышка, гиперплазия ЭПС, повышение содержания ферментов, особенно щелочной фосфатазы, неспецифической эстеразы, b-глюкуронидазы. Только после перестройки начинается коллагеногенез.

Интенсивно размножающиеся фибробласты продуцируют кислые мукополисахариды - основной компонент межклеточного вещества соединительной ткани (гиалуроновую кислоту, хондроитинсерную кислоту, глюкозамин, галактозамин).

При этом зона воспаления не только инкапсулируется, но и возникает постепенная миграция клеточных и бесклеточных компонентов соединительной ткани от периферии к центру, формирование соединительнотканного остова на месте первичной и вторичной альтерации.

Наряду с фибробластами размножаются и другие тканевые и гематогенные клетки. Из тканевых клеток пролиферируют эндотелиальные клетки, которые формируют новые капилляры. Вокруг новообразующихся капилляров концентрируются тучные клетки, макрофаги, нейтрофилы, которые освобождают биологически активные вещества, способствующие пролиферации капилляров.

Фибробласты вместе с вновь образованными сосудами образуют грануляционную ткань. Это, по существу, молодая соединительная ткань, богатая клетками и тонкостенными капиллярами, петли которых выступают над поверхностью ткани в виде гранул.

Основными функциями грануляционной ткани являются: защитная - предотвращает влияние факторов окружающей среды на очаг воспаления, и репаративная - заполнение дефекта и восстановление анатомической и функциональной полноценности поврежденных тканей.

Формирование грануляционной ткани не строго обязательно. Это зависит от величины и глубины повреждения. Грануляционная ткань обычно не развивается при заживлении ушибленных кожных ранок или мелких повреждений слизистой оболочки (Кузин М.И., Костюченок Б.М. и др.,1990).

Грануляционная ткань постепенно превращается в волокнистую ткань, называемую рубцом.

В рубцовой ткани уменьшается количество сосудов, они запустевают, уменьшается количество макрофагов, тучных клеток, снижается активность фибробластов.

Небольшая часть клеточных элементов, располагающаяся среди коллагеновых нитей, сохраняет активность. Предполагают, что сохранившие активность тканевые макрофаги принимают участие в рассасывании рубцовой ткани и обеспечивают формирование более мягких рубцов.

Параллельно с созреванием грануляций происходит эпителизация раны. Она начинается в первые часы после повреждения, и уже в течение первых суток образуются 2-4 слоя клеток базального эпителия.

Скорость эпителизацииобеспечиваетсяследующими процессами: миграцией, делением и дифференцировкой клеток. Эпителизация небольших ран осуществляется в основном за счет миграции клеток из базального слоя. Раны более крупные эпителизируются за счет миграции и митотического деления клеток базального слоя, а также дифференцировки регенерирующего эпидермиса. Новый эпителий образует границу между поврежденным и подлежащим слоем, он препятствует обезвоживанию тканей раны, уменьшению в ней электролитов и белков, а также предупреждает инвазию микроорганизмов.

В процессе пролиферации участвуют и органоспецифические клеточные элементы органов и тканей. С точки зрения возможностей пролиферации органоспецифических клеточных элементов все органы и ткани могут быть расклассифицированы на три группы:

К первой группе могут быть отнесены органы и ткани, клеточные элементы которых обладают активной или практически неограниченной пролиферацией, достаточной для полного восполнения дефекта структуры в зоне воспаления (эпителий кожи, слизистых оболочек дыхательных путей, слизистой желудочно-кишечного тракта, мочеполовой системы, гемопоэтическая ткань и др.).

Ко второй группе относятся ткани с ограниченными регенерационными способностями (сухожилия, хрящи, связки, костная ткань, периферические нервные волокна).

К третьей группе относятся те органы и ткани, где органоспецифические клеточные элементы не способны к пролиферации (сердечная мышца, клетки ЦНС).

Факторами, стимулирующими развитие процессов пролиферации являются:

1. Проколлаген и коллагеназа фибробластов взаимодействующие по типу ауторегуляции и обеспечивающие динамическое равновесие между процессами синтеза и разрушения соединительной ткани.

2. Фибронектин, продуцируемый фибробластами, детерминирует миграцию, пролиферацию и адгезию клеток соединительной ткани.

3. Фактор стимуляции фибробластов, секретируемый тканевыми макрофагами, обеспечивает размножение фибробластов и их адгезивные свойства.

4. Цитокины мононуклеаров стимулируют пролиферативные процессы в поврежденной ткани (ИЛ-1, ФНО, эпидермальный, тромбоцитарный, фибробластический факторы роста хемотаксические факторы). Некоторые цитокины могут ингибировать пролиферацию фибробластов и образование коллагена.

5. Пептид гена, родственного кальцитонину, стимулирует пролиферацию эндотелиальных клеток, а субстанция Р индуцирует выработку ФНО в макрофагах, что приводит к усиленному ангиогенезу.

6. Простагландины группы Е потенцируют регенерацию путем усиления кровоснабжения.

7. Кейлоны и антикейлоны, продуцируемые различными клетками, действуя по принципу обратной связи, могут активировать и угнетать митотические процессы в очаге воспаления (Бала Ю.М., Лифшиц В.М., Сидельникова В.И., 1988).

8. Полиамины (путресцин, спермидин, спермин), обнаруживаемые во всех клетках млекопитающих жизнено необходимы для роста и деления клеток.

Они обеспечивают стабилизацию плазматических мембран и суперспиральной структуры ДНК, защиту ДНК от действия нуклеаз, стимуляцию транскрипции, метилирование РНК и связывание ее с рибосомами, активацию ДНК-лигаз, эндонуклеаз, протеинкиназ и многие другие клеточные процессы. Усиленный синтез полиаминов, способствующих пролиферативным процессам, отмечается в очаге альтерации (Березов Т.Т., Федорончук Т.В., 1997).

9. Циклические нуклеотиды: цАМФ ингибирует, а цГМФ активирует процессы пролиферации.

10. Умеренные концентрации биологически активных веществ и ионов водорода являются стимуляторами регенераторных процессов.

Еще по теме Механизмы развития пролиферации в очаге воспаления:

  1. Общая характеристика и механизмы развития сосудистых реакций в очаге острого воспаления. Механизмы активации тромбообразования в очаге воспаления
  2. Механизмы эмиграции лейкоцитов. Роль лейкоцитов в очаге воспаления
  3. Нервно-трофические влияния и пролиферация при воспалении
  4. Особенности нарушения обмена веществ в очаге воспаления
  5. Молекулярно-клеточные механизмы развития первичной и вторичной альтерации. Классификация медиаторов воспаления. Характеристика их биологического действия
  6. Особенности развития воспалительной реакции в зависимости от локализации воспаления, реактивности организма, характера этиологического фактора. Роль возраста в развитии воспаления

Клеточная пролиферация - увеличение числа клеток путем митоза,

приводящее к росту ткани, в отличие от другого способа увеличения ее

массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные

с делением и специализацией клеток. Эти процессы могут быть как нор-

мальными физиологическими, так и направленными на восстановление ор-

ганизма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью кле-

ток разных тканей к делению. С делением клеток связан процесс заживле-

ния ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления)

утраченных частей. Проблема регенерации представляет интерес для ме-

дицины, для восстановительной хирургии. Различают физиологическую,

репаративную и патологическую регенерацию.

Физиологическая - естественное восстановление клеток и тканей в

онтогенезе. Например, смена эритроцитов, клеток кожного эпителия.

Репаративная - восстановление после повреждения или гибели кле-

ток и тканей.

Патологическая - разрастание тканей не идентичных здоровым тка-

ням. Например, разрастание рубцовой ткани на месте ожога, хряща – на

месте перелома, размножение клеток соединительной ткани на месте мы-

шечной ткани сердца, раковая опухоль.

В последнее время принято разделять клетки тканей животных по спо-

собности к делению на 3 группы: лабильные, стабильные и статические.

К лабильным относятся клетки, которые быстро и легко обновляются

в процессе жизнедеятельности организма (клетки крови, эпителия, слизи-

стой ЖКТ, эпидермиса и др.).

К стабильным относятся клетки таких органов как печень, поджелу-

дочная железа, слюнные железы и др., которые обнаруживают ограничен-

ную способность к делению.

К статическим относятся клетки миокарда и нервной ткани, кото-

рые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания он-

тогенетического уровня организации живого и механизмов саморегуляции

клетки, обеспечивающих целостное функционирование всего организма.

Глава 6

ГЕНЕТИКА КАК НАУКА. ЗАКОНОМЕРНОСТИ

НАСЛЕДОВАНИЯ ПРИЗНАКОВ

6.1 Предмет, задачи и методы генетики

Наследственность и изменчивость являются фундаментальными свой-

ствами живого, т. к. характерны для живых существ любого уровня орга-

низации. Наука, изучающая закономерности наследственности и изменчи-

вости, называется генетикой.

Генетика как наука изучает наследственность и наследственную из-

менчивость, а именно, она имеет дело со следующими проблемами :

1) хранение генетической информации;

2) передача генетической информации;

3) реализация генетической информации (использование ее в конкрет-

ных признаках развивающегося организма под влиянием внешней среды);

4) изменение генетической информации (типы и причины изменений,

механизмы).

Первый этап развития генетики - 1900–1912 гг. С 1900 г. - переот-

крытие законов Г. Менделя учеными Х. Де Фризом, К. Корренсом, Э. Чер-

маком. Признание законов Г. Менделя.

Второй этап 1912–1925 гг. - создание хромосомной теории Т. Мор-

гана. Третий этап 1925–1940 гг. - открытие искусственного мутагенеза и

генетических процессов эволюции.

Четвертый этап 1940–1953 гг. - исследования по генному контролю

физиологических и биохимических процессов.

Пятый этап с 1953 г. и по настоящее время - развитие молекулярной

биологии.

Отдельные сведения по наследованию признаков были известны

очень давно, однако научные основы передачи признаков впервые были

изложены Г. Менделем в 1865 г. в работе: «Опыты над растительными

гибридами». Это были передовые мысли, но современники не придали

значение его открытию. Понятия «ген» в то время еще не было и Г. Мен-

дель говорил о «наследственных задатках», содержащихся в половых клет-

ках, но их природа была неизвестна.

В 1900 г. независимо друг от друга Х. Де Фриз, Э. Чермак и К. Кор-

ренс заново открыли законы Г. Менделя. Этот год и считается годом рож-

дения генетики как науки. В 1902 г. Т. Бовери, Э. Вильсон и Д. Сеттон сде-

лали предположение о связи наследственных факторов с хромосомами.

В 1906 г. У. Бетсон ввел термин «генетика», а в 1909 г. В. Иогансен -

«ген». В 1911 г. Т. Морган и сотрудники сформулировали основные поло-

жения хромосомной теории наследственности. Они доказали, что гены

расположены в определенных локусах хромосом в линейном порядке, по-

ние определенного признака.

Основные методы генетики: гибридологический, цитологический и

математический. Генетика активно использует и методы других смежных

наук: химии, биохимии, иммунологии, физики, микробиологии и др.

Опухолевый рост является следствием нарушения тканевого гомеостаза, поддерживаемого балансом клеточной пролиферации и гибели (апоптоза). Увеличение клеточной массы опухоли может быть обусловлено как усилением пролиферации, так и угнетением апоптоза. Вероятность «сбоев» в механизмах поддержания этого гомеостаза вполне реальна в условиях канцерогенного воздействия факторов внешней среды.

Наследуемые нарушения механизмов тканевого гомеостаза обусловлены теми или иными повреждениями структуры ДНК.

Нормальная делящаяся клетка с поврежденной ДНК либо прекращает деление до полной репарации повреждений, либо самоуничтожается (апоптоз). Последний вариант предпочтительней, поскольку потеря клетки может не иметь никаких последствий. Сохранение такой клетки таит для организма смертельную угрозу возникновения клона дефектных (потенциально опухолевых) клеток. Опухолевый рост возможен лишь тогда, когда дефектные клетки способны «проскальзывать» через защитный барьер апоптоза.

Ниже приведено краткое описание нарушений, обусловливающих трансформацию нормальных клеток в злокачественные.

В организме существуют два типа физиологической регуляции клеточного размножения - эндокринная и паракринная (рис. 12.1). Регуляторные молекулы секретируются клеткой и действуют вовне (через кровоток, на соседние клетки или себя). Утолщенные полукружия, изображенные на поверхности клеточной мембраны, - рецепторные участки.

Эндокринная регуляция.

Она осуществляется железами внутренней секреции (гипофиз, надпочечники, щитовидная, околощитовидная, поджелудочная и половые железы). Они секретируют продукты своей активности в кровь и оказывают генерализованное воздействие на весь организм.

Паракринная регуляция.

В отличие от эндокринной паракринная регуляция заключается в том, что секретаруемые клетками активные вещества распространяются за счет диффузии и действуют на соседние клетки-мишени. Так действуют, например, митогенные стимуляторы (полипептидные ростовые факторы) - эпидермальный фактор роста, фактор роста тромбоцитов, интерлейкин-2 (фактор роста Т-клеток), фактор роста нервов и т.д.

Рис. 12.1. Схема эндокринной (а), паракринной (б) и аутокринной (в) регуляции

Аутокринная регуляция.

Она отличается от паракринной регуляции тем, что одна и та же клетка является источником ростового фактора и его мишенью. В результате может возникать феномен непрекращающегося, самоподдерживающегося митогенного «возбуждения» клетки, приводящего к нерегулируемому размножению. Клетка не нуждается во внешних митогенных стимулах и становится полностью автономной. С помощью аутокринной регуляции можно объяснить механизмы канцерогенеза. Для этого вначале разъясним понятие, называемое митогенной «рефлекторной дугой».

Рис. 12.2. «Рефлекторная дуга» митогенного сигнала

В регуляции сложных систем, как бы различны они не были, обнаруживаются общие черты. Между рефлекторной активностью организма и митотической активностью клетки есть принципиальное сходство (рис. 12.2).

Суть заключается в том, что на периферии системы (организм, клетка) существуют различные специализированные рецепторы (глаз, ух о, тактильные и обонятельные - в первом случае; рецепторы ростовых факторов - во втором); воспринимаемые ими внешние сигналы передаются внутрь системы (в виде импульсов по чувствительным нервам или в виде каскадов реакций фосфорилирования); затем происходит обработка сигнала в центре (центральной нервной системе пли в клеточном ядре) и информация центробежно (в виде импульсов по двигательным нервам или с помощью молекул мРНК) поступает к исполнительным органам и индуцирует их активность (двигательную, секреторную - в первом случае и митотическую - во втором).

Перенос митогенного сигнала от периферии клетки к ее ядру осуществляется в виде каскада реакций фосфорилирования посредством протеин-киназ (ферментов, фосфорилирующих белки). Существует три типа протеинкиназ (тирозиновые, сери новые и треониновые) по их способности фосфорилировать определенные аминокислоты. Фосфатные группы играют роль молекулярных переключателей: меняя конформацию определенных белковых структур (доменов), они могут «включать» или «выключать» их активность (имеются в виду ферментативная активность, ДНК-связывающая способность и способность образовывать белок-белковые комплексы).

Центростремительная волна митогенной импульсации в максимально упрощенном виде сводится к передаче фосфатной группы наподобие эстафетной палочки от одной протеин-киназы к другой. В конечном итоге она достигает ядерных регуляторных белков, активирует их посредством фосфорилирования и тем самым индуцирует перепрограммирование генома. Необходимо отметить, что активность протеинкиназ практически на любом этапе переноса митогенного сигнала уравновешивается активностью противодействующих им ферментов --дефосфорилирующих белки фосфатаз. Баланс позитивных и негативных эффектов - фундаментальное свойство регуляции клеточного деления, проявляемое на любом его уровне.

Противоположно направленный (центробежный, из ядра в цитоплазму) поток информации в виде молекул мРНК обусловливает специфическую реакцию клетки на митогенный сигнал - синтезируется множество новых белков, выполняющих структурные, ферментативные и регуляторные функции.

В структуре многих сигнальных белков существуют своеобразные «стыковочные узлы» разных типов, предназначенные для белок-белковых взаимодействий. Поскольку одна молекула может обладать несколькими такими участками, то существует возможность самосборки очень сложных многокомпонентных конструкций, необходимых для переноса сигнала и для регуляции транскрипции. Присоединение к конструкции новых элементов иногда обозначают термином «рекрутирование». Одни и те же структурные блоки могут формировать существенно разные конструкции, что наделяет систему функциональной гибкостью и свойством взаимозаменяемости отдельных ее элементов.

Нерегулируемое размножение трансформированной клетки можно представить, если продолжить аналогию с рефлекторной дугой, как следствие возникновения очага «застойного» возбуждения в том или ином звене пути переноса митогенного сигнала. Повреждение гена и, как следствие, структурный дефект какого-либо из сигнальных белков, способный зафиксировать его в постоянно активном состоянии (т.е. сделать независимым от «вышестоящих» регуляторных инстанций), - один из главных механизмов канцерогенеза.

Нормальные гены, участвующие в переносе митогенного сигнала и потенциально способные на такое превращение, называются протоонкогенами.

Баланс позитивных и негативных факторов, как уже отмечалось выше, - фундаментальное свойство любой сложной регуляторной системы, в том числе и управляющей клеточным делением. Протоонкогены - элементы позитивной регуляции; они являются акселераторами клеточного деления и в случае превращения в онкогены проявляют себя как доминантный признак.

Вместе с тем в давних опытах по образованию гетерокарионов (продуктов слияния клеток в культуре) установлено, что свойство туморогенности (способности образовывать опухоли при перевивке животным) ведет себя как признак рецессивный - гетерокарионы. образованные слиянием нормальных и трансформированных (опухолевых) клеток, ведут себя как нормальные. Таким образом, в нормальных клетках явно присутствуют факторы, тормозящие клеточное деление и способные при внесении в опухолевую клетку нормализовать ее. Многие из этих белковых факторов идентифицированы; кодирующие их гены получили название генов-супрессоров.

Рис. 12.3. Схема клеточного цикла (пояснения в тексте)

Итак, полная трансформация клетки является следствием нескольких генетических событий - активации онкогена(ов) и инактивации гена(ов), осуществляющих супрессорные функции.

В основе канцерогенеза лежит нарушение цикла деления. Клетки организма находятся в одном из трех возможных состояний (рис. 12.3):

  1. в цикле;
  2. в стадии покоя с сохранением возможности вернуться в цикл;
  3. в стадии окончательной дифференцировки, при которой способность делиться полностью утрачена (таковы, например, нейроны головного мозга). Образовывать опухоли могут, естественно, только клетки, способные делиться.

Цикл удвоения разных клеток человека существенно варьирует: от 18 ч у клеток костного мозга до 50 ч у клеток крипт толстой кишки. Основными его периодами являются митоз (М) и синтез ДНК (фаза S), между которыми выделяют два промежуточных периода - G, и G 2 . Вовремя интерфазы (период между двумя делениями) клетка растет и готовится к митозу.

На протяжении фазы G 1 существует ответственный момент (так называемая точка рестрикции R), когда решается, войдет ли клетка в следующий цикл деления или предпочтет стадию покоя G 0 , в которой она может находиться неопределенно долго. Как уже упоминалось, окончательно дифференцированные клетки постоянно находятся в стадии покоя, тогда как сохранившие способность к делению могут вернуться в цикл при соответствующей стимуляции внешними факторами, причем последующие этапы совершаются автоматически.

В отличие от «асоциальной» опухолевой клетки нормальная клетка подчиняется исходящим из организма сигналам (митогенный стимул). Если в определенный момент у нормальной клетки есть необходимые условия (достаточная масса и содержание белков, концентрация кальция, обеспеченность питательными веществами) и она к тому же получает митогенный стимул, то она вступает в очередной цикл деления. В отсутствие внешнего сигнала нормальная клетка выходит из цикла и в этом заключается ее коренное отличие от клетки опухолевой, которая побуждается к делению эндогенными стимулами.

При делении клетки есть два критически важных момента: фаза синтеза ДНК и вхождение в митоз, когда действуют своеобразные «контрольно-пропускные пункты» (checkpoints ). В этих «пунктах» проверяется готовность к удвоению (репликации) ДНК (в первом случае) и завершенность репликации (во втором случае). Если в клетке ДНК повреждена, то ее удвоение блокируется перед началом деления. Следовательно, блокируется этап, способный закрепить повреждения ДНК и передать их потомству. Аналогичная цель достигается апоптозом, причем какой путь выберет клетка (блокировку деления или апоптоз) зависит от многих условий.

Процесс репликации ДНК продолжается несколько часов. За это время весь генетический материал должен быть воспроизведен абсолютно точно. В случае каких-либо отклонений продвижение клетки в цикле блокируется или она может подвергнуться апоптозу. Если же дефектны сами «контрольно-пропускные пункты», то дефекты генома не устраняются, передаются потомству и возникает опасность злокачественной трансформации клетки.

Как говорилось ранее, для деления клетки необходим митогенный сигнал, перенос которого - процесс многоэтапный.

В зависимости от типа клетки и конкретного митогенного стимула реализуется один из множества сигнальных путей. Например, ростовые факторы действуют путем, опосредованным тирозинпротеинкиназными рецепторами и MAP (mitogen activated protein) - киназным каскадом, т.е. каскадом реакций фосфорирования, возникающим как следствие митогенной активации клетки.

Ростовые факторы (регуляторы пролиферации).

Ростовые факторы секретируются одними клетками и действуют паракринным образом на других. Это небольшие белки; полипептидная цепь EGF (epidermal growth factor) состоит, например, из 53 аминокислот. Существует несколько семейств ростовых факторов, члены каждого из которых объединены структурной гомологией и функциональным сходством. Одни из них стимулируют пролиферацию (например, EGF и PDGF - platelet-derived growth factor, тромбоцитарный фактор роста), а другие (TGF-p, TNF, интерфероны) - подавляют ее.

Рецепторы к ростовым факторам.

Рецепторы расположены на клеточной поверхности. Каждая клетка обладает своим особым набором рецепторов и соответственно - набором ответных реакций. Тирозинкиназные рецепторы состоят из нескольких доменов: внеклеточного (взаимодействующего с лигандом), трансмембранного и подмембранного, обладающего тирозин-протеинкиназной активностью.

При связывании с ростовыми факторами (например EGF) молекулы рецепторов инициируют реакции, вследствие чего возникает трансмембранный перенос сигнала - зарождение той волны «возбуждения», которая распространяется затем в виде каскада реакций фосфорилирования внутрь клетки и благодаря которой митогенный стимул достигает в конце концов генетического аппарата ядра.

Ras-белки..

Одним из наиболее важных является сигнальный путь с участием Ras-белков (это подсемейство так называемых G-белков, образующих комплексы с гуаниловыми нуклеотидами; Ras-GTP - активная форма, Ras-GDP - неактивная). Этот путь один из основных в регуляции клеточного деления у высших эукариот - настолько консервативен, что его компоненты способны заменить соответствующие гомологи в клетках дрозофилы, дрожжей и нематод. Он опосредует разнообразные сигналы, исходящие из внешней среды, и функционирует, по всей вероятности, в каждой клетке организма. Ras-белки играют роль своеобразного турникета, через который должен пройти почти любой из поступающих в клетку сигналов. Критическая роль этого белка в регуляции клеточного деления известна с середины 80-х г. XX в., когда активированная форма соответствующего гена (онкоген Ras) была обнаружена во многих опухолях человека.

Ras-опосредованный сигнальный путь контролирует так называемый МАР-киназный каскад. Активность ферментов, участвующих в киназных каскадах, уравновешивается активностью противодействующих им и находящихся под столь же строгим контролем фосфатаз. Результатом активации МАР-киназ является индукция ряда факторов транскрипции и, как следствие, стимуляция активности ряда генов.

Таким образом, если в нормальной клетке активная конформация сигнального белка формируется лишь под воздействием внешнего стимула и имеет транзиторный характер, то в клетке трансформированной (и ее клонах) она закреплена постоянно.

Можно считать доказанным, что исходным элементом всей системы клеток крови является стволовая клетка, полипотентная, способная к многочисленным разнообразным дифференцировкам и в то же время обладающая способностью к самоподдержанию, т. е. к пролиферации без видимой дифференцировки.

Отсюда следует, что принципы управления системой кроветворения должны обеспечивать такую ее регуляцию, в результате которой при стабильном кроветворении выполняются следующие два основных условия: число продуцируемых клеток каждого типа постоянно и строго соответствует числу погибших зрелых клеток; число стволовых клеток постоянно, и образование новых стволовых клеток точно соответствует числу их, ушедших в дифференцировку.

Еще более сложные задачи решаются при стабилизации системы после возмущающего воздействия. В этом случае число образующихся стволовых клеток должно превышать число ушедших в дифференцировку до тех пор, пока величина отдела не достигает исходного уровня, после чего вновь должны быть установлены сбалансированные отношения между числом новообразующихся и дифференцирующихся стволовых клеток.

С другой стороны, дифференцировка стволовых клеток должна регулироваться так, чтобы восстановить число зрелых клеток только того ряда, который оказался уменьшенным (например, эритроидные клетки после кровопотери) при стабильной продукции других клеток. И здесь после усиленного новообразования данной категории клеток ее продукция должна быть снижена до сбалансированного уровня.

Количественная регуляция кроветворения , т. е. обеспечение образования необходимого числа клеток нужного типа в определенное время, осуществляется в последующих отделах, прежде всего в отделе коммитированных предшественников.

Стволовая клетка обладает двумя основными свойствами: способностью к самоподдержанию, достаточно длительному, сравнимому со временем существования всего многоклеточного организма, и способностью к дифференцировке. Так как последняя, видимо, необратима, «принявшая решение» о дифферсицировке стволовая клетка необратимо покидает отдел.

Итак, важнейшая проблема регуляции в этом отделе состоит в том, чтобы при повышении запроса дифференцировке нe подвергались бы все стволовые клетки, после чего регенерация кроветворения оказалась бы невозможной в связи с истощением способных к самоподдержанию элементов, так как клетки всех последующих отделов к длительному самоподдержанию не способны. Такая регуляция в организме действительно существует. После облучения в высоких дозах практически вся кроветворная система погибает. Между тем, например, у мыши, регенерация возможна после того, как облучением уничтожено 99,9% всех стволовых клеток (Bond е. а., 1965). Несмотря на огромный запрос на дифференцировку, сохранившиеся 0,1% стволовых клеток восстанавливают свое число и обеспечивают резкое повышение дифференцировки клеток последующих отделов.