Какими способами можно изменить внутреннюю энергию. Способы изменения внутренней энергии тела

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.


Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

Конвекция — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа , в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.


где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1 - атомного газа i = 3, для 2 - атомного газа i = 5, для 3 - атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца.

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля . Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи. Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи.

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии A ст = Q, поэтому Отсюда Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.

Внутренняя энергия тела не является какой-то постоянной величиной: у одного и того же тела она может изменяться. При повышении температуры тела внутренняя энергия тела увеличивается, так как увеличивается средняя скорость , а значит, и кинетическая энергия, молекул этого тела. С понижением же температуры, наоборот, внутренняя энергия тела уменьшается. Таким образом, внутренняя энергия тела изменяется при изменении скорости движения его молекул. Какими же способами можно увеличить или уменьшить эту скорость? Обратимся к опыту.

На подставке (рис. 181) укреплена тонкостенная латунная трубка, в которую налито немного эфира, трубка плотно закрыта пробкой. Трубку обвивают веревкой и быстро двигают веревку то в одну, то в другую сторону. Через некоторое время эфир закипит и его пар вытолкнет пробку. Этот опыт показывает, что внутренняя энергия эфира, увеличилась: ведь он нагрелся и даже закипел. Увеличение внутренней энергии произошло в результате работы, совершенной при натирании веревкой трубки.

Тела нагреваются также при ударах, разгибании и сгибании, вообще при деформации. Во всех этих случаях за счет совершенной работы увеличивается внутренняя энергия тел.

Итак, внутреннюю энергию тела можно увеличить путем совершения работы над телом. Если работу совершает само тело, то внутренняя энергия его при этом уменьшается. Это можно наблюдать на следующем опыте.

Берут толстостенный стеклянный сосуд, закрытый пробкой. Через специальное отверстие в сосуд накачивают воздух, в котором содержится водяной пар. Через некоторое время пробка выскакивает из сосуда (рис. 182). В тот момент, когда пробка выскакивает, в сосуде появляется туман. Его появление означает, что воздух в сосуде стал холоднее (вспомните, что и на улице туман появляется во время похолодания).

Находящийся в сосуде сжатый воздух, выталкивая пробку, совершает работу. Эту работу он совершает за счет своей внутренней энергии, которая при этом уменьшается. Об уменьшении энергии мы судим по охлаждению воздуха в сосуде.

Внутреннюю энергию тела можно изменить и другим способом.

Известно, что чайник с водой, стоящий на плите, металлическая ложка, опущенная в стакан с горячим чаем, печь, в которой разведен огонь, крыша дома, освещаемая солнцем, нагреваются. Во всех случаях повышается температура тел, а значит, увеличивается и их внутренняя энергия. Как объяснить ее увеличение?

Как, например, нагревается холодная металлическая ложка, опущенная в горячий чай? Сначала скорость и кинетическая энергия молекул горячей воды больше скорости и кинетической энергии частиц холодного металла. В тех местах, где ложка соприкасается с водой, молекулы горячей воды передают часть своей кинетической энергии частицам холодного металла. Поэтому скорость и энергия молекул воды в среднем уменьшается, а скорость и энергия частиц металла увеличивается: температура воды уменьшается, а температура ложки увеличивается - температуры их постепенно выравниваются. С уменьшением кинетической энергии молекул воды уменьшается и внутренняя энергия всей воды, находящейся в стакане, а внутренняя энергия ложки, увеличивается.

Процесс изменения внутренней энергии, при котором над телом не совершается работа, а энергия передается от одних частиц к другим, называют теплопередачей. Итак, внутреннюю энергию тела можно изменить двумя способами: совершением механической работы или теплопередачей .

Когда тело уже нагрето, мы не можем указать, каким из двух способов это было сделано. Так, держа в руках нагретую стальную спицу, мы не можем сказать, каким способом ее нагрели - натирая ее или помещая в пламя.

Вопросы. 1. Приведите примеры, показывающие, что внутренняя энергия тела увеличивается при совершении над телом работы. 2. Опишите опыт, показывающий, что за счет внутренней энергии тело может совершить работу. 3. Приведите примеры увеличения внутренней энергии тела способом теплопередачи. 4. Объясните на основе молекулярного строения вещества теплопередачу. 5. Какими двумя способами можно изменить внутреннюю энергию тела?

Задание.

Положите пятикопеечную, монету на лист фанеры или деревянную доску. Прижмите монету к доске и двигайте ее быстро, то в одну, то в другую сторону. Заметьте, сколько раз надо передвинуть монету, чтобы она стала теплой , горячей. Сделайте вывод о связи между проделанной работой и увеличением внутренней энергии тела.

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • Можно ли однозначно определить внутреннюю энергию тела

  • Тело имеет энергию

  • Доклад по физике на тему внутренняя энергия

  • От каких макропараметров зависит внутренняя энергия идеального газа

  • Темы кодификатора ЕГЭ : внутренняя энергия, теплопередача, виды теплопередачи.

    Частицы любого тела - атомы или молекулы - совершают хаотическое непрекращающееся движение (так называемое тепловое движение ). Поэтому каждая частица обладает некоторой кинетической энергией.

    Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

    Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

    Внутренняя энергия тела - это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом .

    Внутренняя энергия термодинамической системы - это сумма внутренних энергий тел, входящих в систему .

    Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

    1. Кинетическая энергия непрерывного хаотического движения частиц тела.
    2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
    3. Энергия электронов в атомах.
    4. Внутриядерная энергия.

    В случае простейшей модели вещества - идеального газа - для внутренней энергии можно получить явную формулу.

    Внутренняя энергия одноатомного идеального газа

    Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

    Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма - ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

    Функция состояния

    Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

    Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

    Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

    Совершение механической работы;
    теплопередача.

    Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

    Изменение внутренней энергии: совершение работы

    Если работа совершается над телом, то внутренняя энергия тела возрастает.

    Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура - это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

    Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

    Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы - работу совершили молоток и сила трения о доску.

    Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

    Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным . Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться - его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

    Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

    Изменение внутренней энергии: теплопередача

    Теплопередача - это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы . Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом .

    Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

    Сейчас мы рассмотрим их более подробно.

    Теплопроводность

    Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

    Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню - от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

    Рис. 1. Теплопроводность

    Теплопроводность - это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела .

    Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

    Плохими проводниками тепла являются поэтому пористые тела - такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

    Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

    Происходит это вследствие другого вида теплопередачи - конвекции.

    Конвекция

    Конвекция - это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества .

    Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

    В результате устанавливается циркуляция воздуха, которая и служит примером конвекции - распространение тепла в комнате осуществляется воздушными потоками.

    Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

    Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

    Рис. 2. Конвекция

    В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

    Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать . Если радиатор установить под потолком, то никакая циркуляция не возникнет - тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

    Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

    Тепловое излучение

    Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

    Здесь работает третий вид теплопередачи - тепловое излучение . Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

    Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле...

    В результате развития этого процесса в пространстве распространяется электромагнитная волна -«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой - в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет - частный случай электромагнитных волн.

    Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

    Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет - это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше - частоты ультрафиолетового излучения.

    Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением - в напоминание о том, что их источником служит тепловое движение частиц вещества.

    Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

    При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна - довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

    Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

    Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

    Частицы любого тела атомы или молекулы совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

    Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

    Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т. е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

    Внутренняя энергия тела это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

    Внутренняя энергия термодинамической системы это сумма внутренних энергий тел, входящих в систему.

    Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

    1. Кинетическая энергия непрерывного хаотического движения частиц тела.

    2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.

    3. Энергия электронов в атомах.

    4. Внутриядерная энергия.

    В случае простейшей модели вещества идеального газа для внутренней энергии можно получить явную формулу.

    8.1 Внутренняя энергия одноатомного идеального газа

    Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного8 движения его атомов. Эту энергию можно найти, умножив число атомов газа N на среднюю кинетическую энергию E одного атома:

    U = NE = N

    kT = NA

    U = 3 2 m RT:

    Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

    8 У многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул.

    8.2 Функция состояния

    Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от ¾предыстории¿ системы, т. е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

    Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

    Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

    совершение механической работы;

    теплопередача.

    Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

    8.3 Изменение внутренней энергии: совершение работы

    Если работа совершается над телом, то внутренняя энергия тела возрастает.

    Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

    Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

    Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы работу совершили молоток и сила трения о доску.

    Если же работа совершается самим телом, то внутренняя энергия тела уменьшается. Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется

    и поднимает некий груз, совершая тем самым работу9 . В ходе такого процесса воздух будет охлаждаться его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

    Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

    8.4 Изменение внутренней энергии: теплопередача

    Теплопередача это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

    9 Процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики.

    Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение. Сейчас мы рассмотрим их более подробно.

    8.5 Теплопроводность

    Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т. е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

    Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 18 )10 .

    Рис. 18. Теплопроводность

    Теплопроводность это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

    Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

    Плохими проводниками тепла являются поэтому пористые тела такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

    Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната? Происходит это вследствие другого вида теплопередачи конвекции.

    8.6 Конвекция

    Конвекция это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

    Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный

    10 Изображение с сайта educationalelectronicsusa.com.

    воздух11 , с которым повторяется то же самое.

    В результате устанавливается циркуляция воздуха, которая и служит примером конвекции распространение тепла в комнате осуществляется воздушными потоками.

    Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

    Конвекционные потоки в воздухе и жидкости показаны12 на рис.19 .

    Рис. 19. Конвекция

    В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

    Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать. Если радиатор установить под потолком, то никакая циркуляция не возникнет тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

    Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

    8.7 Тепловое излучение

    Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

    Здесь работает третий вид теплопередачи тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

    Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем13 . В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле. . .

    11 Тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер.

    12 Изображения с сайтаphysics.arizona.edu.

    13 Подробнее об этом будет рассказано в электродинамике, в теме про электромагнитную индукцию.

    В результате развития этого процесса в пространстве распространяется электромагнитная волна ¾зацепленные¿ друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет частный случай электромагнитных волн.

    Скорость распространения электромагнитных волн в вакууме огромна: 300000 км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

    Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше частоты ультрафиолетового излучения.

    Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называютя тепловым излучением в напоминание о том, что их источником служит тепловое движение частиц вещества.

    Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

    При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы ¾светимся¿). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока (6000 C), что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

    Давайте ещё раз взглянем на три вида теплопередачи (рис. 20 )14 .

    Рис. 20. Три вида теплопередачи: теплопроводность, конвекция, излучение

    14 Изображения с сайтаbeodom.com.