Современные слепочные материалы в ортопедической стоматологии. Классификация слепочных масс. Требования к сплавам металлов

Оттискные материалы в
ортопедической стоматологии
Подготовил студент
4 курса 18 группы
Макоев Азамат

I. Оттиск:
Определение;
Требования к применению;
Рабочие характеристики.
II. Оттискные материалы:
Классификация;
Гипс;
Цинкоксидэвгенольные оттискные материалы;

II. Оттискные материалы:
Термопластические оттискные материалы;
Эластичные оттискные материалы;
Агаровые материалы;
Альгинатные материалы;
Полисульфидные оттискные материалы;
Полиэфирные оттискные материалы;
Силиконовые оттискные материалы.

Оттиск - негативное (обратное) отображение
поверхности твердых и мягких тканей,
расположенных на протезном ложе и его границах.
Протезное ложе - комплекс органов и тканей,
находящихся в непосредственном контакте с зубным
протезом.
По оттиску отливается
модель, которая повторяет
анатомические образования
в полости ртаи является
позитивным отображением
протезного ложа.
Оттиск верхней
челюсти

1. Индифферентность и нетоксичность;
2. Точность воспроизведения поверхности;
3. Способность восстановления после упругой
деформации;
4. Тиксотропность - свойство материала
растекаться только при наличии компрессии, а
без давления сохранять форму капли;
5. Высокое сопротивление на разрыв;
6. Гидрофильность.

1. Быстрое затвердевание материала под действием
катализатора (температуры, влаги);
2. Сохранение стабильности;
3. Низкая линейная усадка материала;
4. Устойчивость материала к дезинфекции;
5. Контрастность цветов разных слоев оттискного
материала;
6. Вкусовые характеристики.
Оттискная ложка

Классификация
оттискных материалов
Твердеющие
(гипс, Репин)
Термопластические
(Стенс-03, МСТ-03)
Эластичные
(Эластик плюс, Stomaflex)

ГИПС

Химическая природа зуботехнического гипса - полуводный сульфат кальция.
Для повышения прочности в состав природного гипса вводят синтетические
добавки.
Гипс довольно широко применялся для получения оттисков при изготовлении
штамповано – паяных конструкций и съемных протезов.
Достоинства:
1. Высокая точность воспроизведения деталей протезного ложа;
2. Регулируемая вязкость;
3. Размерная стабильность.
Недостатки:
1. Абсолютно не пластичный материал;
2. Неприятен для пациента.

Цинкоксидэвгенольные оттискные материалы

Форма выпуска в виде двух паст - основной и катализаторной. В
состав их входят: оксид цинка, растительные масла, эвгенол,
наполнители, придающие материалу консистенцию пасты.
Достоинства:
Обладают высокой текучестью в начальной фазе
и достаточно четко отображают мельчайшие
детали протезного ложа.
Недостатки:
1. При выведении оттиска материал может
Repin фирмы
крошиться и деформироваться, с трудом счищается
Spofa Dental
с кожных покровов и инструментария.
2. Некоторые компоненты (гвоздичное и пихтовое масла,
эвгенол) могут вызывать раздражение слизистой
оболочки полости рта.

Термопластические оттискные материалы

Термопластические (обратимые) материалы имеют свойство многократно
менять свою консистенцию в зависимости от температуры среды, в которую их
помещают. В состав термопластических компаундов входят природные и
синтетические смолы, парафин, канифоль, стеариновая кислота, красители и т.д.
Термопластические компаунды выпускаются в виде пластин или палочек, либо в
емкости для разогревания.
Достоинства:
Возможность материала многократно возвращаться к пластическому состоянию.
Недостатки:
1. Неточность отпечатка протезного ложа;
2. Процесс охлаждения протекает неравномерно.

Эластичные оттискные материалы

гидроколлоиднные массы
обратимые
(агаровые)
необратимые
(альгинатные)
эластомеры
силиконовые
полиэфирные
полисульфидные

Агаровые материалы

Агар – это сульфат галактозы, который при смешивании с водой образует
коллоид. При нагревании в диапазоне температур от 700 С до 1000 С
принимает вязкотекучее состояние и превращается опять в гель между
300 С и 500 С.
Достоинства:
1. Повышенной текучести и гидрофильности;
2. Точно воспроизводить рельеф твердых и мягких тканей полости рта;
3. Материал легко удаляется.
Недостатки:
1. Очень легко рвется и отделяется от оттискной ложки;
2. Необходимость использования дополнительного
оборудования;
3. Сложность стерилизации и дезинфекции.
Оттиск, выполненный
агаровым материалом

Альгинатные материалы

Основой альгинатных материалов является альгинат натрия.
В процессе отверждения альгинатного материала происходит
значительное изменение рН, от 11 в начале процесса до приблизительно 7
в конце реакции. Как правило, в процессе замешивания хроматических
альгинатов выделяют три стадии (смешивания, обработки, помещения в
полость рта), которым соответствуют определенные цвета.
Достоинства:
1. Эластичность;
2. Простота;
3. Удобство в применении;
4. Доступность.
Недостатки:
Phase Plus
Недостаточная точность при
воспроизведении рельефа поверхности
Tropicalgin
(Zhermack®)
зубов (особенно в пришеечной области).

1. Стадия смешивания
альгинатного материала
Phase Plus (Zhermack®)
2. Стадия нанесения на
оттискную ложку
альгинатного материала
Phase Plus (Zhermack®)
3. Стадия помещения
в полость рта
альгинатного материала
Phase Plus (Zhermack®)

Полисульфидные оттискные материалы

Выпускаются в виде двух паст: базы и катализатора
Различная вязкость достигается путем введения
дозированного количества наполнителя.
Достоинства:
1. Точность отображения;
2. Пластичность,;
3. Прочность на разрыв.
Недостатки:
1. Остаточная деформация;
GC Surflex
2. Усадка при полимеризации;
3. Неприятный запах.

Полиэфирные оттискные материалы

Полиэфирные массы – содержат различные полиэфиры, пластификаторы
и инертные наполнители. Выпускаются в виде основной и
катализирующей паст только низкой и средней степени вязкости, что
ограничивает их применение. Реакция полимеризации проходит по типу
полиприсоединения, т.е. без выделения побочных веществ.
Достоинства:
1. Гидрофильность;
2. Хорошая текучесть;
3. Небольшая линейная усадка;
4. Точность отображения.
Недостатки:
1. Недостаточная эластичность;
2. Небольшое сопротивление разрыву;
Impregum Penta H DuoSoft
3. Набухание во влажной среде;
4. Высокая стоимость.

Силиконовые оттискные материалы

Силиконовые материалы в наибольшей степени подходят для
снятия прецизионных оттисков.
Опредделяют 2 типа силиконов:
аддитивные(А–силиконы), т.е. полимеризующиеся за счет
процесса полиприсоединения, при котором не остается побочных
продуктов полимеризации. Содержат виниловые концевые
группы, поэтому их называют также поливинилсилоксановыми
или А-силиконами.
конденсационные силиконы (С–силиконы), т.е. проходящие
процесс поликонденсации(condensation type). Этот процесс
подразумевает образование дополнительных веществ, в данном
случае это спирт. Содержат гидроксильные концевые группы.

А-силиконовые оттискные материалы

А-силиконы всех степеней вязкости выпускаются в виде
основной и катализаторной паст одинаковой консистенции.
Достоинства:
1. Высочайшее качество воспроизведения деталей поверхности;
2. Сбалансированное сочетание текучести и структурной
вязкости;
3. Размеростабильны;
4. Минимальная усадка материала (менее 1 %);
5. Устойчивость к деформации.
6. Тиксотропность(свойство материала растекаться только при
наличии компрессии, а без давления сохранять форму капли).
Недостатки:
1. Недостаточная прочности на разрыв;
2. Гидрофобны.

ImpressFlex® VPS
Panasil Putty
Panasil initial contact X-Light

С-силиконовые оттискные материалы

Конденсационные силиконы производятся в виде основной массы
высокой, средней и низкой степени вязкости, содержащей силиконовый
каучук, и катализирующей жидкости или пасты в тубах, содержащих
сшив-агент – тетраэтилсиликат (ТЭС). Кроме того, в их состав входят
различные наполнители, подчеркивающие то или иное свойство материала.
Достоинства:
1. Точность воспроизведения;
2. Пластичность;
3. Невысокая стоимость;
4. Хорошо подвергаются дезинфекции.
Недостатки:
1. Высокая остаточная деформация;
2. Линейная усадка;
3. Низкое сопротивление разрыву;
PROTESIL Putty Standard
4. Недостаточная твердость.

1. Ортопедическая стоматология. Прикладное материаловедение
Учебник для медицинских вузов. Под редакцией проф.
В.Н.Трезубова. Санкт-Петербург, Специальная Литература, 1999. -
324с.
2. Жулев Е.Н.Материаловедение в ортопедической стоматологии:
Учебное пособие.- Нижний Новгород,1997.-136с.
3. Марков Б.П., Лебеденко И.И., Еричев В.В. Руководство к
практическим занятиям по ортопедической стоматологии. Часть I .М: ГОУ ВУНМЦРФ, 2001.-662с.
4. А.В. Цимбалистов, С.И. Козицына, Е.Д. Жидких, И.В. Войтяцкая
«Оттискные материалы и технология их применения». СанктПетербург. 2001.

Классификация оттискных материалов

Среди множества классификаций оттискных материалов центральное положение занимает классификация по ISO, разработанная G.Staegemann и R.Phillips в 1991 году. Классификация проста и формируется на основе консистенции материала после полимеризации и механизма самой реакции полимеризации.

Жесткие материалы после отверждения не имеют свойства эластичности и после деформаций не восстанавливают свою исходную форму. Эластичным материалам свойственно восстанавливать свою первоначальную форму после воздействия упругих деформаций. Упругими деформациями называются те, в пределах которых сохраняется целостность материала, то есть в пределах модуля упругости.

Одни материалы твердеют в результате химических реакций и в таком случае являются необратимыми, так как реакция полимеризации однонаправленная и не протекает по обратному пути. Противоположным свойством обладают термопластические материалы. Такие материалы про определённой для каждого материала температуре приобретают пластические свойства и затвердевают при их охлаждении

Гипс

Медицинский гипс нашёл широчайшее применение как в зуботехнических работах, так и в клинической практике. В зуботехнических лабораториях гипс расходуется тоннами в год. Несмотря на такое широкое использование гипса его применение в качестве оттискного материала уже практически полностью ушло в прошлое и сам факт его использования часто вызывает удивление у молодых специалистов. Гипс был одним из первых оттискных материалов, позволявший получать оттиски удовлетворительного качества. Однако, в наше время вытесняется из практики современными оттискными материалами, значительно превосходящими гипс по качественным характеристикам. Поэтому многие стоматологи знакомы с уже ставшим крылатым в некоторых кругах выражением В.Н. Копейкина: «Использование гипса в качестве оттискного материала порочит звание врача-стоматолога». Но большинство стоматологов если не сами, то наблюдали процесс снятия оттисков гипсом.

В качестве оттискного материала используется полугидрат сульфата кальция, который получают в процессе обжига природного гипса, которым является дигидрат сульфата кальция. Итак, при температуре в 110-130 ℃ дигидрат сульфата кальция разлагается до полугидрата сульфата кальция, который является в разы более растворимым в воде соединением и в водном растворе выпадает в осадок в виде прежнего дигидрата сульфата кальция.

(CaSO 4 ) 2 · H 2 O + 3H 2 O CaSO 4 · 2H 2 O + t 0

Процесс превращения полугидрата в дигидрат является экзотермическое реакцией, поэтому при снятии оттисков гипсом его раскалывали и удаляли из ротовой полости раньше того, как наступит полное его затвердевания. Таким образом избегают перегрева тканей и обеспечивают более лёгкое раскалывание гипса.

Тем не менее гипс продолжает использоваться в качестве оттискного материала. У гипса есть одно важное свойство, которое непосильно современным эластичным материалам – отсутствие усадки. Такое свойство очень ценно при изготовлении литых конструкций, когда отсутствие деформаций при выведении из полости рта и последующей усадки позволяют смоделировать и отлить несъёмные протезы превосходной точности. Поэтому в некоторых бюджетных случаях, например, при изготовлении литых конструкций в боковой группе зубов использование гипса может быть приемлемо и оправдано. Так же существуют методики снятия оттиска с имплантатов с использованием гипса. Это позволяет избегать мельчайших изменений положений трансферов в оттискном материале. В то время, как зубы человека обладают некоторой степенью подвижности и прощают мелкие деформации оттискного материала, конструкции на иплантатах обладают условной неподвижностью и мельчайшие изменения положения трансферов относительно друг друга в оттиске могут стать причиной неудовлетворительной конструкции протеза в будущем.

Цинк-оксид-эвгенольные оттискные материалы

Полимеризация цинк-оксид-эвгенольных (ZOE) как оттискных материалов, так и стоматологических цементов происходит в результате взаимодействия эвгенола и оксида цинка. Эвгенол характеризуется раздражающим действием на организм человека, поэтому в тубе с оксидом цинком присутствуют минеральные масла, устраняющие такое действие материала. Помимо этих добавок, в состав тубы с эвгенол входят такие наполнители, как тальк, мел, каолин, которые обеспечивают необходимую консистенцию материала, добавляют удобства при замешивании, способствуют уменьшению усадки материала при полимеризации. Минеральные соли и канифоль ускоряют процесс полимеризации и твердения материала.

Цинк-оксид-эвгенольные оттискные материалы обладают высокой точностью и способны воспроизвести элементы рельефа размерами в 50 мкм. Так же материал обладает крайне низкой усадкой, которая находится в пределах 0,15%. Однако материал жёсткий и при деформациях при выведении оттиска ломается. Поэтому материал имеет достаточно узкую сферу применения, которая ограничивается в основном снятием функциональных оттисков с беззубых челюстей, альвеолярный отросток которых не имеет выраженных поднутрений и материал при выведении не будет деформирован или искажён. Помимо этого, материал применяют для регистрации окклюзии.

Термопластические компаунды

Само название термопластических компаундов широко раскрывает суть этих материалов – это композиция веществ, образующих единую массу, которая при нагревании становится пластичной, может изменять свою форму и затвердевает в таком состоянии при понижении температуры. А тот момент, что при повторном нагревании эта масса снова получит свойство пластичности и обуславливает её обратимость.

Классические термопластические компаунды включают в свой состав канифоль, тальк, парафин, церезин, оксид цинка, а также красители и пластификаторы для придания материалу нужной консистенции в стадии пластичности.

Материал размягчается в водяной бане при температуре 60-70 ℃, формуется и укладывается в оттискную ложку и накладывается на ткани протезного ложе, где и затвердевает при температуре ротовой полости. Поэтому состав подбирается таким образом, чтобы при температуре в 37℃ материал полностью твердел и не деформировался при выведении. Однако то, что материал не деформируется и является основным недостатком, ограничивший область применения термопластов. Помимо этого, материал не обладает способностью точно отображать рельеф и не сохраняет свою пространственную стабильность при условиях окружающей среды.

Исходя из этого, материал применяется скорее как вспомогательный для получения оттисков, нежели как основной, роль которого достаётся более совершенным материалам. Термопласты могут быть использованы для регистрации окклюзии, что также удобно из-за того, что материал выпускается в виде пластинок. Помимо этого, материал удобен для функционального оформления краёв индивидуальных ложек, что является важным условием успешного съёмного протезирования.


Форма выпуска термопластических компаундов Материал размягчают в водяной бане
Из-за невысокой точности и конечной твёрдости область его применения ограничивается регистрацией окклюзии, функциональным оформление краёв оттиска и оттисками с беззубых челюстей

Эластичные оттискные материалы

Ротовая полость является обладательницей очень тонких и элегантных форм, плавные переходы сменяются резкими углами, и, открытая глазу, таит множество секретов, и именно оттискным материалам достаётся возможность продемонстрировать это нам. Именно то, что спрятано, каждое естественное сужение, тонкое пространство между зубами, пришеечная и поддесневая область представляют наибольший интерес для успешного протезирования, что может быть безвозвратно утрачено при необратимых деформациях оттискных материалов. Это и обуславливает то, что эластические материалы занимают основное место в мире оттискных материалов, практически полностью вытеснив «жёстких» представителей, и предлагают свои альтернативы в полном объёме.

Агаровые оттискные материалы

Агаровые оттискные материалы также, в сравнении с необратимым гидроколлойдом альгинатом, именуют обратимым гидроколлойдом или просто агаровым гидроколлойдом.

Агар-агар является смесью полисахаридов, получаемый из морских водорослей, которая при соединении с водой и образует тот самый гидроколлойд. Такое соединиение имеет структуру геля, образующаяся в результате большого числа водородных связей, которые разрушаются при относительно низкой температуре, не способной вызвать разрушения полимера. При нагревании водородные связи разрушаются и гель переходит в золь, представляющий собой вязкую жидкость, удобную для применения в качестве оттискного материала. При последующем охлаждении при температуре ротовой полости материал вновь приобретает структуру геля при сохранённой вновь полученной пространственной структуре.

Материал бывает различной вязкости, упакованный в тубах, а более текучие материалы выпускаются в шприцах для удобного использования в придесневой области.

Термическими превращениями, которые применяются при манипуляциях с агаром, можно обжечь пациента, поэтому требуется аккуратная работа и поддержание оптимальной для работы и пациента температуры материала. Для этого материал помещают сначала в баню с кипящей водой для быстрого разжижения материалы. Тут важно не перегреть материал и не вызвать разрушения полимера. Далее, материал перемещается во вторую водяную баню с температурой 60-70℃ для поддержания вязкости материала. После этого материал помещается в специальную оттискную ложку с системой подогрева и охлаждения воды, которая находится при температуре, не способной вызвать ожог мягких тканей ротовой полости, но обеспечивающей достаточное рабочее время материала.

Агаровые материалы могут применяться в условиях повышенной влажности без искажения оттиска, то есть в условиях десневой борозды. Материалы обладают высокой точностью отображения рельефа, не доставляют неудобств при отливке моделей. Помимо этого, материалы приятны на вкус и не оставляют стойких пятен на одежде.

Однако, наряду с важными положительными качествами, для использования материала требуется дорогостоящее оборудование, такое как специальные ложки с водяным охлаждение, а также хьюмидор для хранения оттисков в условиях повышенной влажности.

Материал не способен долго сохранять свою пространственную стабильность, что вносит необходимость отливки моделей не позже чем через 15 минут после снятия оттисков. Но при условии того, что оттискам необходимо время для восстановления после деформации, такие требования существенной снижают качество оттиска.

Наряду с этим, низкая прочность и невысокая эластическая память могут привести к необратимым деформациям при выведении оттисков из полости рта.

Альгинатные оттискные материалы

Альгинатные оттискные материалы заняли очень уверенные позиции в клинике ортопедической стоматологии, в частности в съёмном протезировании, а также при изготовлении ортодонтических аппаратов. Дело в том, что именно альгинатные материалы, несмотря на их недостатки, способны отобразить мягкие ткани ротовой полости на большом протяжении. Именно альгинаты способны полностью отобразить переходную складку, уздечки и другие естественные складки и рельеф слизистой, что крайне важно при изготовлении протезов или аппаратов, непосредственно соприкасающихся со слизистой оболочкой ротовой полости на большой площади. К таким протезам относятся полные и частичные пластиночные протезы и бюгельные протезы, а также различные ортодонтические аппараты. К тому же, съёмное протезирование в ортопедической стоматологии это зачастую бюджетное протезирование, часто пожилых людей, и учитывая невысокую стоимость альгинатных оттискных материалов, их применение благоприятно сказывается на комфорте пациента

Альгинатный оттискной материал выпускается в виде порошка, упакованного в пакеты или банки. Порошок состоит из натриевых и калиевых солей альгиновой кислоты, которую получают из морских водорослей, главным образов Laminaria, и солей кальция, чаще всего сульфата кальция, которые при смешивании с водой образуют необратимый гель. Гель остаётся гелем до тех пор, пока вода, входящая в его состав, не испарится и не превратит материал в твёрдую и хрупкую массу. Для длительного сохранения воды в массе в состав порошка также входят ингибиторы, в качестве которых выступают некоторые соли натрия и калия. Для придания материалу необходимой консистенции в порошок также добавляют тальк, оксид цинка и другие наполнители.

Материал замешивается металлическим или пластмассовым шпателем в резиновой колбе. С помощью специальных мерников в колбу насыпают необходимое количество порошка, а после добавляют соответствующее количество воды и тщательно перемешивают. Колбу кладут боком на ладонь и восьмиобразными движениями «втирают» порошок и воду в стенку. Правильное выполнение этой манипуляции обеспечит гомогенную консистенцию материала, так как даже опытные стоматологи не всегда могут замешать материал однородно и без комочков, что прямым образом скажется на качестве оттиска и отливаемой по нему модели. Для облегчения работы врача существуют специальные системы для автоматического замешивания материала, но опять же, альгинатные оттискные материалы часто применяют при бюджетном протезировании и такие системы не всегда являются оправданными.

Также, время отверждения альгинатов довольно чувствительно к температуре воды. Оптимальной считается вода комнатной температуры, то есть примерно 22℃, при которой материал затвердеет за 3-4 минуты, и изменение температуры на один градус вверх или вниз может ускорять или замедлять время желирования примерно на 20 секунд соответственно.

Оттиски, полученные альгинатными оттискными материалами, довольно точные, что определяется воспроизведением деталей рельефа размерами в 50 мкм. Такие оттиски хорошо восстанавливаются после деформации и легко отделяются от модельного материала.

Но в процессе дальнейших реакций, происходящих в материале уже после выведения из ротовой полости, выделяются побочные продукты реакции, такие как вода, кислоты, иные частицы, которые оказывают влияние на процесс затвердевания гипса и его поверхностную структуру, что не позволяет получить гладкой поверхности гипсовых моделей. Такое свойство резко ограничивает сферу применения материала и не позволяет использовать материал при изготовлении несъёмных конструкций протезов.

Однако, самой важной особенностью альгинатных оттискных материалов является увы неположительное их свойство – пространственная нестабильность. Альгинаты очень чувствительны к сухости или, напротив, влажности. При хранении оттиска как в открытых условиях, так и в воде усадка и набухание соответственно превышают предельно допустимое значение в 0,3%. Это требует отливания моделей уже в течение 15 минут после выведения оттиска из ротовой полости, что также сказывается на его восстановлении после деформации и качестве получаемой модели. Поэтому, при возможной более длительной задержке до получения моделей, оттиск необходимо помещать в герметичный пакет, внутри которого изменения размеров материала будут находится в допустимых пределах.

Эластомерные оттискные материалы

Материалы группы эластомерных оттискных являются одними из наиболее прогрессивных среди всех материалов, и тот факт, что фирмы производители направляют основные усилия именно на совершенствование этой группы оттискных материалов, является одновременно и показателем высокого класса материалов, и следствием этого, для достижения максимальных результатов и конкуренции на передовых уровнях.

Группа эластических материалов состоит ещё из четырёх типов материалов:

  • Полисульфидные оттискные материалы;
  • Силиконовые оттискные материалы конденсированного типа (С-тип);
  • Силиконовые оттискные материалы присоединительного типа (А-тип);
  • Полиэфирные оттискные материалы.

В основе такого разделения материалов лежит различие химического состава и реакций полимеризации.

Помимо этого, эластомерные оттискные материалы делятся по степеням вязкости:

  • 0 тип – очень высокая вязкость (P utty);
  • 1 тип – высокая вязкость (H igh);
  • 2 тип – средняя вязкость (M edium);
  • 3 тип – низкая вязкость (L ow).

Разделение материалов по вязкости способствует получению одновременно высокоточных и прочных оттисков, благодаря техникам двухфазных оттисков и применению индивидуальных ложек.

Полисульфидные оттискные материалы

При добавлении к полисульфидному полимеру, являющемуся основным компонентом полисульфидных оттискных материалов, диоксида свинца инициируется реакция дальнейшей полимеризации и отвердевания материала. Такой процесс носит название вулканизации.

Полисульфидные оттискные материалы обладают крайне высокой эластичностью, и, в следствие этого, высокой прочностью на разрыв, что с одной стороны позволяет получать оттиски очень высокого качества, однако из-за такой конечной эластичности и недостаточной твёрдости повышена степень деформации материала, и модели, несмотря на высокую точность, не способны отобразить реальную картину рельефа тканей протезного ложе.

Помимо этого, материалы гидрофобны, что требует соблюдения сухости тканей протезного ложе. Материалам не свойственна длительная пространственная стабильность, что требует получения моделей в кратчайшие сроки после снятия оттиска, что неблагоприятно сказывается на степени восстановления материала после деформации, которое особенно важно для группы эластомерных оттискных материалов.

Силиконовые оттискные материалы конденсированного типа (C -тип)

В основе реакции полимеризации силиконовых оттискных материалов конденсированного типа лежит взаимодействие диметисилоксана с акрилсиликатами с выделением побочного продукта реакции в виде этилового спирта.

Форма выпуска материала зависит от степени вязкости материала: базисные пасты материалов 0 и 1 типов вязкости выпускаются в банках, материалы 2 и 3 типов расфасованными в тубах, а катализатор в тубах является общим для всех типов вязкости у одного производителя. В отличие от силиконовых оттискных материалов присоединительного типа материалы C-типа не выпускаются в формах для автоматического смешивания, так как с маркетинговой и финансовой точки зрения это невыгодно и неразумно из-за того, что материалы А-типа более совершенны и значительно дороже, в то время как С-силиконы применяются в более бюджетных работах и лишние затраты на автоматическое смешивание будут неуместны.

Силиконы С-типа обладают высокой прочностью на разрыв, достаточной твёрдостью, что положительно сказывается на отображение мелких и важных деталей рельефа, таких как граница препарирования. Высокая степень восстановления после деформации, универсальность и невысокая цена обуславливают широкое применение материалов в клинике несъёмного протезирования.

Однако, материалы гидрофобны и качественные оттиски из таких материалов требуют соблюдения сухости тканей протезного ложе. Существенным недостатком является пространственная нестабильность, обусловленная выделением побочного продукта реакции полимеризации (этиловый спирт) и усадкой, в короткое время превышающая допустимые показатели и требующая скорого отливания моделей, что непосредственности сказывается на их достоверности из-за недостаточной степени восстановления оттиска после деформации.

Полиэфирные оттискные материалы

Основой полиэфирных материалов является полиэфирный полимер со стороны базисной пасты и алкил, содержащийся в пасте-катализаторе и инициирующий реакцию полимеризации.

Полиэфирные оттискные материалы имеют высокую пространственную стабильность, а жёсткость материала увеличивается со временем, что делает их более приемлемыми для снятия оттисков с имплантатов. Помимо этого, большое рабочее время, которое затем сменяется резким затвердеванием опять же удобно для снятия оттисков с имплантатов, так как некоторые манипуляции с имплантатами продолжительны и длительная вязкость материала способствует спокойной работе без опасений преждевременного затвердевания материала, которое наступает относительно резко, что опять же удобно для врача и пациента.

Длительное время хранения материала без изменения пространственной структуры позволяет получать отсроченные модели и в полном объёме использовать свойство эластической памяти.

Также, полиэфиры обладают тиксотропностью, что делает их более текучими под давлением и позволяет отображать мелкие элементы рельефа. Достаточно высокая гидрофильность прощает влажность тканей протезного ложе без снижения качества оттиска.

Материалы высокой жёсткости после затвердевания довольно твёрдые, что может стать причиной перелома ослабленных зубов или вывихов при заболеваниях периодонта. Во избежание подобных осложнений важно изолировать выраженные поднутрения с помощью материалов низкой вязкости.

Однако, за все эти преимущества полиэфирных оттискных материалов приходится платить, что обуславливает высокую стоимость таких материалов.



Материал Impregum в тубах для автоматического замешивания в аппарате Pentamix Аппарат Pentamix 3 для автоматического смешивания оттискных материалов

Силиконовые оттискные материалы присоединительного типа (А-тип)

Наряду с полиэфирами, силиконовые материалы присоединительного типа относятся к наиболее передовым оттискным материалом, что является причиной их всё более широкого применения в клинической практике и стремлению к практически полному вытеснению прочих материалов в клинике современной стоматологии.

В отличие от С-силиконов, реакция полимеризации силикона присоединительного типа не сопровождается выделением побочных продуктов реакции, что позволяет избежать основного недостатка первого – усадки, в относительно короткие сроки выходящая за допустимые пределы. Высокий класс материала обуславливает и его высокую стоимость, которая оправдывается высоким качеством оттиска и конечной конструкции в целом.

Оттискной материал обладает высокой точностью отображения рельефа, хорошую смачиваемость и эластичность, которая поддерживается необходимой твёрдостью при использовании техник получения двухфазных оттисков. Приятных цвет, вкус и запах удобны в первую очередь для пациента, а внедрение систем автоматического замешивания доставляет удобство и для врача. Помимо стандартной формы выпуска в пластиковых банках и тубах, совместно с полиэфирами А-силиконы выпускаются в специальных картриджах для автоматического смешивания с помощью специальных аппаратов для материалов 0 и 1 типа вязкости и диспенсеров для 2 и 3, что удобно для точного нанесения оттискного материала на придесневую область и границу препарирования.

Однако, некоторые материалы этой группы гидрофобны, что требует обеспечения сухости поля. При замешивании материала нельзя пользоваться латексными перчатками, что диктуется свойством латекса ингбировать реакцию полимеризации такого материала.



Базисный силиконовый материал А-типа Elite HD+ для ручного замешивания Корригирующий силиконовый материал А-типа Elite HD+ для автоматического смешивания

Статья написана Соколовым Н.А.. Пожалуйста, при копировании материала не забывайте указывать ссылку на текущую страницу.

Классификация Оттискных Материалов обновлено: Январь 28, 2018 автором: Валерия Зелинская

Оттискные материалы

1) Назначение оттискных материалов.

Оттискные материалы – это вспомогательные стоматологические материалы, предназначенные для получения негативного изображения рельефа поверхности протезных тканей.

2) Требования, предъявляемые к оттискным материалам

Дозировка компонентов оттискного материала должна быть легкой и обеспечивающей достаточную точность в их количественном соотношении;

Приготовленный оттискной материал должен быть однородным, не иметь комков и зерен;

Материал должен легко накладываться на протезные ткани и легко вы­водиться из полости рта после затвердевания;

Не разрушаться при взаимодействии со средой полости рта;

В результате происходящих в материале термических и химических процессов они не должны оказывать вредного воздействия на ткани полости рта и организм в целом;

Обладать слабым антисептическим действием;

Не иметь запаха и вкуса (или обладать приятным запахом и вкусом, не вызывающим токсических реакций организма);

Точно отображать рельеф поверхности протезных тканей (твердых и мягких тканей челюстно-лицевой области, расположенных на протезном ложе и его границах);

Отвердение оттискных материалов в условиях влажности и температуры полости рта должно происходить в течение 4-6 минут с момента смешивания компонентов;

Полностью восстанавливаться после деформации;

Сохранять постоянство размеров после выведения оттиска из полости рта (в процессе затвердевания и хранения оттиска его усадка не должна пре­вышать 0,1%);

Подвергаться обработке и дезинфекции;

Не соединяться с модельным материалом, легко отделяться от него и давать возможность получать гипсовую модель с гладкой поверхностью.

3) Классификация оттискных материалов

По химическому составу, физическим свойствам и условиям применения оттискные материалы объединены в соответствующие группы Разработано несколько классификаций. Наибольшее распространение в бывшем СССР получила классификация оттискных материалов по физическому состоянию материала после отвердения (А.И.Дойников, В.Д.Синицын). Исходя из физических свойств материалов, авторы выделяют три группы оттискных масс.



Классификация оттискных материалов (А.И.Дойников,В.Д.Синицын, 1986)


Физическое

Состояние


Химическая

Природа

Выделяемые авторами оттискные материалы, объединенные в группы, включают в себя названия основы, на базе которой они изготовлены. Напри­мер, оттискные материалы, изготовленные на основе окиси цинка и эвгенола -цинкоксидэвгеноловые, на основе силиконового каучука - силиконовые и т.д.

Классификация, предложенная А.И.Дойниковым и В.Д.Синицыным, не­сколько напоминает классификацию, ранее предложенную И.М.Оксманом , выделявшим исходя из физических свойств материалов четыре группы отти­скных масс:

1) Кристаллизующиеся (гипс, эвгенолоксицинковые пасты);

2) Термопластические массы (стене, воск, массы Ванштейна, Керра, адгезиаль и др.);

3) Эластические (альгинатные и гидроколлоидные массы);

4) Самотвер­деющие (пластмассы холодного отвердевания).

Е.Н.Жулев выделяет три группы оттискных материалов:

1) жесткие –– гипс, цинкоксидэвгеноловые;

2) эластические –– альгинатные, силиконовые, тиоколовые;

3) жесткие, обретающие пластичность после нагревания –– стомопласт, ортокор, дентафоль и др.

Представленные классификации просты в применении, но не включают в себя отдельные группы современных эластомерных материалов, или, наоборот, объединяют несовместимые их виды (например, обратимые и необратимые гидроколлоиды).

Наиболее полной классификацией современных оттискных материалов, отражающей режим твердения, физическое состояние и химический состав материалов, следует признать классификацию ISO (G.Staegemann, 1990; R.Phillips, 1991).

В характеристике принципов отвердения материалов выделяются: необ­ратимые материалы - твердеющие в результате химических реакций и обра­тимые материалы - твердеющие под воздействием температурных изменений.

Физическое состояние оттискного материала после его отвердения ха­рактеризуется как жесткое или эластическое.

Классификация оттискных материалов ISO

4) Гипс. Способы получения. Виды гипса, их свойства.

Гипс занимает ведущее место в группе вспомогательных мате­риалов, применяемых в ортопедической стоматологии. Им пользу­ются почти на всех этапах протезирования. Его применяют для по­лучения:

Оттиска;

Модели челюсти;

Маски лица;

В качестве формовочного материала;

–– при паянии;

–– для фиксации моделей в окклюдаторе (артикуляторе) и кювете.

Природный гипс представ­ляет собой широко распро­страненный минерал белого, серого или желтоватого цвета. Залежи его встречаются вмес­те с глинами, известняками, каменной солью. Химический состав природного гипса опре­деляется формулой CaS0 4 х 2Н 2 0 - двуводный сульфат кальция. Образование гипса происходит в результате выпадения его в оса­док в озерах и лагунах из водных растворов, богатых сульфатными солями. Залежи гипса обычно содержат примеси кварца, пирита, карбонатов, глинистых и битумных веществ.

Плотность гипса равна 2,2-2,4 г/см 3 . Растворимость его в воде составляет 2,05 г/л при 20° С.

Гипс для стоматологической практики получают в результате об­жига природного гипса. При этом двуводный сульфат кальция теряет часть кристаллизационной воды и переходит в полуводный (полу­гидрат) сульфат кальция. Процесс обезвоживания наиболее ин­тенсивно протекает в температурном интервале от 120° С до 190° С.

CaSO 4 · 2H 2 O (CaSO 4) 2 · 2H 2 O

(Полонейчик –– 110-130° С). При перегреве гипса в пределах 200 –1000° С образуются ангидриды (CaSO 4) не способные присоединять воду.

В зависимости от условий термической обработки полуводный гипс может иметь две модификации - α и β-полугидраты, которые отличаются физико-химическими свойствами.

- α-гипс получают при нагревании двуводного гипса под дав­лением 1,3 атм., что заметно повышает его прочность. Этот гипс называют супергипсом, автоклавированным, каменным гипсом;

- β-гипс получается нагреванием двуводного гипса при атмо­сферном давлении.

Гипс после обжига размалывают, просеивают через особые сита и фасуют в мешки из специальной бумаги или в бочки.

Наряду с положительными качествами гипс имеет ряд недостатков, в результате чего за последние годы он почти полностью вытеснен другими материалами. В частности, гипс хру­пок, что часто приводит к поломке оттиска при выведении из по­лости рта. При этом мелкие детали его, заполняющие пространство между зубами, нередко теряются.

Кроме того, гипсовый оттиск с трудом, путем раскалывания на фрагменты, выводится из полости рта, плохо отделяется от моде­ли, не дезинфицируется. Поэтому гипс, особенно сверхтвердых сортов, гораздо чаще применяется как вспомогательный материал, в основном для получения моделей челюстей.

Известно множество разновидностей гипса, выпускаемого для нужд ортопедической стоматологии. В соответствии с требования­ми международного стандарта (ISO) по степени твердости выделя­ют пять классов гипса :

I - мягкий, используется для получения оттисков (окклюзионных оттисков)

II - о б ы ч н ы й, используется для наложения гипсовых повя­зок в общей хирургии (данный тип гипса в литературе иногда обо­значается термином «медицинский гипс»), например Галипластер,

III- т в е р д ы й, используется для изготовления диагностиче­ских и рабочих моделей челюстей в технологии съемных зубных протезов, например Пластон-L, Гипсогал, в состав которого входит а-полугидрат сульфата кальция;

IV - сверхтвердый, используется для получения разбор­ных моделей челюстей, например Фуджирок-ЕР, Галигранит,Супергипс, Супра Стоун, в со­став которого входит а-полугидрат сульфата кальция –– имеют время затвердевания 8-10 мин;

V- особотвердый, с добавлением синтетических компо­нентов. Данный вид гипса обладает увеличенной поверхностной прочностью. Для замешивания требуется высокая точность соотно­шения порошка и воды. Так, например, Дуралит-S - материал на основе синтетического а-полугидрата сульфата кальция - характе­ризуется очень низким расширением при затвердевании, что обес­печивает получение точных рабочих моделей.

5) Процесс кристаллизации гипса. Вещества, ускоряющие и замедляющие этот процесс.

При замешивании полугидрата гипса с водой происходит обра­зование двугидрата, причем вся смесь затвердевает.

(CaS0 4) 2 х Н 2 0 + ЗН 2 0 2(CaS0 4 х 2Н 2 0)

Эта реакция экзотермическая, т. е. сопровождается выделением тепла.

Схватывание гипса протекает очень быстро.Сразу же после смешивания с водой становится заметным загустение массы, но в этот период гипс еще легко формуется. Дальнейшее уплот­нение уже не позволяет проводить формовку. Процессу схватыва­ния предшествует кратковременный период пластичности гипсовой смеси. Замешанный до консистенции сметаны, гипс хорошо запол­няет формы и дает четкие ее отпечатки. Пластичность гипса и по­следующее быстрое затвердевание делают возможным его приме­нение для получения оттисков с челюстей и зубов. Однако процесс нарастания прочности гипса еще продолжается некоторое время, и максимальная прочность гипсового оттиска и гипсовой модели достигается при высушивании его до постоянной мас­сы в окружающей среде.

На скорость схватывания гипса влияет ряд факторов:

· темпера­тура,

· степень измельчения (дисперсность),

· способ замешивания,

· качество гипса

· присутствие в гипсе примесей.

Повышение темпе­ратуры смеси до +30°-+37° С приводит к сокращению време­ни схватывания гипса. При увеличении температуры от +37° до +50° С скорость схватывания начинает заметно падать, а при тем­пературе свыше 100° С схватывания не происходит.

Степень из­мельчения (тонкость помола) также оказывает влияние на ско­рость затвердевания: чем выше дисперсность гипса, тем больше его поверхность, а увеличение поверхности двух химически реагирую­щих веществ приводит к ускорению процесса.

На скорость схватывания полугидрата влияет также способ его перемешивания. Чем энергичнее будет замешиваться смесь, тем полнее станет контакт между гипсом и водой и, следовательно, тем быстрее схватывание.

Отсыревший гипс затвердевает значительно медленнее, чем сухой. Такой гипс лучше всего просушить при тем­пературе +150°-+170° С. Во время просушивания необходимо по­стоянно помешивать гипс, так как вследствие его плохой теплопро­водности возможно неравномерное нагревание, что приводит к ча­стичному образованию таких продуктов, как нерастворимый ан­гидрид и т. п.

Особое значение при работе со стоматологическим гипсом име­ют соли-катализаторы. Они обычно ускоряют процесс схватывания гипса. Наиболее эффективными являются такие ускорители, как сульфат калия или натрия, хлорид калия или натрия. При увеличе­нии концентрации свыше 3% они, наоборот, замедляют схватыва­ние. Наиболее часто в стоматологических кабинетах применяют в качестве ускорителя 2-3% раствор поваренной соли.

Ингибито­рами затвердевания гипса являются сахар, крахмал, глицерин.

ü Катализаторы - вещества, ускоряющие химические реакции.

ü Ингибиторы - вещества, замедляющие протекание химических ре­акций или прекращающие их.

При получении моделей челюстей ускорители применять не следует, во-первых, для замедления затвердевания, во-вторых, для упрочнения гипса.

Между скоростью твердения гипса и его прочностью имеется, как правило, обратная зависимость: чем быстрее протекает схваты­вание, тем меньше прочность полученного изделия, и наоборот, чем медленнее смесь твердеет, тем она прочнее. На­пример, замешивание гипса на растворе буры дает ощутимое за­медление твердения, в результате чего образуется очень прочный продукт.

Упрочнение гипсовых моделей осуществляют различными при­емами. После тщательного высушивания гипса (для удаления оставшейся в порах влаги) модель погружают в расплавленный стеарин или парафин. Поверхность изделия приобретает блеск и вид слоновой кости. Подобную обработку применяют для приго­товления учебных экспонатов (муляжей) с целью придания гипсо­вым моделям красивого внешнего вида и повышения прочности.

Свежеприготовленный гипс и ранее затвердевшее изделие из гипса прочно соединяются между собой. Этим свойством пользу­ются в зубопротезной технике, например при гипсовке моделей в артикуляторе или кювете. В тех случаях, когда гипсовая модель получается по гипсовому оттиску, это свойство служит препятстви­ем для последующего их разъединения. Для того чтобы избежать этого явления, иногда накладывают на поверхность формы жиро­вую прослойку. Однако применение жира или вазелина может при­вести к искажению модели, поэтому более подходящим материа­лом для разделения поверхностей оттиска и модели может служить мыльный раствор или раствор жидкого стекла, в который погружа­ют оттиск на 5-10 мин. Указанные растворы образуют тонкую пленку и меньше искажают рельеф модели.

Практика показывает, что разделение двух гипсовых изделий, например оттиска и модели, можно осуществить без применения изолирующих веществ. Чтобы ослабить связь между ними, оттиск предварительно погружают в воду до полного насыщения, т. е. до вытеснения всего воздуха из его пор. Насыщенный водой оттиск не может больше поглощать влагу из нанесенной на его поверхность свежеприготовленной гипсовой массы. Таким образом, поверх­ность модели будет плотно прилегать к поверхности оттиска без проникновения частиц одного в толщу другого, и их можно будет легко разъединить путем откалывания.

6) Составы других твёрдо-кристаллических слепочных материалов

К твердым оттискным материалам относятся также цинкоксид­эвгеноловые пасты.

Смеси, в состав которых входят окись цинка и эвгенол (гваякол), широко применяются в стоматологической практике как оттискные и пломбировочные материалы. В ряде случаев цинкоксидэвгеноловые (ZOE) материалы применяются для временной фиксации провизорных протезов.

Материал состоит из двух паст в состав которых входят оксид цинка, эв­генол, пластификаторы, наполнители, катализаторы, ароматические вещества и красители. Выпускают ZOE пасты в виде наборов, состоящих из двух туб, с различными по составу и цвету компонентами.

В основу отвердения ZOE паст положена реакция между оксидом цинка и эвгенолом, которая состоит из двух этапов:

1. ZnO + H 2 O Zn(OH) 2 (гидролиз оксида цинка)

2. Zn(OH) 2 + 2 HE ZnE 2 + 2H 2 O (кристаллизация соли)

основание кислота (эвгенол) соль

Состав паст приведен в табли­це:

Для получения оттиска необходимое количество обеих паст смешивают на водостойкой бумаге в равных количествах с помощью металлического шпателя для цемента. Перемешивание производят в течение 1-1,5 минут до получения равномерной окраски ма­териала. Рабочее время составляет

3-4минуты, а время связывания - 7-10 минут..

Цинкоксидэвгеноловые оттискные материалы обладают приемлемой усадкой. Сокращение размеров материала в процессе твердения не пре­вышает 0,1%.

Если требуется удлинение време­ни связывания материала, допускается добавление масел или воды, измене­ние соотношения между двумя паста­ми, охлаждение шпателя для замеши­вания или сокращение времени сме­шивания.

Цинкоксидэвгеноловые оттискные материалы обладают приемлемой усадкой. Сокращение размеров мате­риала в процессе твердения не пре­вышает 0,1%.

Область применения ZOE, как оттискных материалов, в первую очередь связана с функциональными слепками с беззубых челюстей. Для этих целей материал пригоден благодаря своей способности давать отпечатки с отчетли­выми изображениями деталей, своему постоянству объема и способности за­твердевать во влажной среде. Правильная консистенция пасты исключает возможность насильного сжатия мягких тканей и позволяет безукоризненно отработать отпечатки согласно индивидуальным особенностям пациента. От­печаток получается совершенно точный и в том случае, если слой материала был совсем тонкий, так как масса безукоризненно льнет к основанию и обла­дает достаточной механической стойкостью. В отличие от гипса ZOE мате­риалы позволяют проводить уточнение функционального оттиска (перебази­ровку) или дополнительную компрессию слизистой оболочки в области желе­зистой зоны, т.к. новая порция пасты, наслаиваясь на предыдущий слой, хо­рошо с ним соединяется.

ZOE пасты могут быть использованы для снятия отпечатков отдельных зубов в медном кольце, регистрации окклюзии при наличии естественных зу­бов, для фиксации центральной окклюзии при использовании прикусных ва­ликов (вместо размягченного воска) и для временной фиксации несъемных протезов.

Среди эвгеноловых паст наибольшее распространение имеет чешский Репин , представляющий собой 2 алюминиевые тубы с белой (основная) и желтой (катализаторная) пастами. В состав катализаторной пасты входят:

Гвоздичное масло (эвгенол) - 15%;

Канифоль и пихтовое масло - 65%;

Наполнитель (тальк или белая глина) - 16%;

Ускоритель (хлористый магний) - 4%.

Обе пасты смешиваются в равном соотношении. Реакция пре­ципитации, происходящая между эвгенолом и оксидом цинка, при­водит к затвердеванию материала (эвгенолата цинка), которое ускоряется при интенсивном замешивании, добавлении влаги и по­вышении температуры.

Материал предназначен для получения функциональных оттис­ков, особенно с беззубых челюстей. Он дает четкий детальный от­печаток слизистой оболочки, хорошо прилипает к индивидуальной ложке, достаточно легко отделяется от модели.

Эвгеноловая масса Неогенат (Франция) включает в себя бе­лую пасту на основе окиси цинка и красную пасту на основе эвге­нола (15%). Предназначена для получения функциональных от­тисков с беззубых челюстей, перебазировки протезов, фиксации воскового базиса во время определения центрального соотноше­ния челюстей.

Для приготовления материала из каждого тюбика выдавлива­ется примерно по 10 см пасты на стеклянную пластинку или блок плотной мелованной бумаги. При помощи жесткого широкого шпателя обе пасты тщательно в течение 30 с смешиваются до по­лучения текучей гомогенной массы розового цвета. Последняя наносится на индивидуальную ложку, которая вводится в по­лость рта, слегка встряхивается для равномерного распределения материала, прижимается к челюсти и удерживается около 1 мин, после чего пациент производит необходимые функциональные движения губами, щеками, языком, дном полости рта, мягким нёбом.

Оттиск выводится через 2,5-3 мин после введения ложки. Если оттиск имеет дефекты, то в их области и по периферии уда­ляется слой массы глубиной 1 мм. Это место заполняется свеже­приготовленной пастой, и ложка вновь вводится в полость рта. Материал не подвержен усадке, поэтому получение модели может быть отсрочено.

Викопрес - цинкоксидэвгеноловая паста для функциональных оттисков. Благодаря своим водопоглощающим свойствам она аб­сорбирует воду с поверхности тканей полости рта при снятии отти­ска и обеспечивает получение точного отпечатка.

К пасте прилагаются дополнительные компоненты:

- Вико-1 - антисептический крем для кожи, предназначенный для защиты губ пациента и рук стоматолога;

- Вико-2 - жидкость для удаления пасты с инструментария и моделей.

Однако при всех своих достоинствах цинкоксидэвгеноловые пасты при выведении из полости рта могут деформироваться или крошиться. Поэтому они вытесняются эластическими оттискными материалами и находят основное применение в качестве времен­ного фиксирующего материала для несъемных зубных протезов.

Наряду с ZOE пастами, выпускаются оттискные материалы, получаемые путем омыления ортоэтилбензойной кислоты оксидом цинка. Эти материалы принято называть неэвгеноловыми пастами (например: Nogenol Bite Registration Paste- Сое).

7) Альгинатные слепочные материалы. Сущность процессов гелеобразования

Появление альгинатных оттискных масс относится к началу 1940-х годов. Материалы этого типа завоевали прочное место в стоматологической практике и способствовали значительному со­кращению применения гипса в качестве оттискного материала.

В качестве оттискных материалов используются натриевые или калиевые соли альгиновой кислоты. Они представляют порошки, которые при смешивании с водой образуют золь, превращающийся в процессе химической реакции в гель. Для придания гелю физических свойств, позволяющих использовать его в качест­ве оттискного материала, необходимо повысить его эластичность и жесткость, уменьшить клейкость. Это достигается введением в него гипса, а также на­полнителей (белая сажа, сульфат бария, карбонат натрия и др.). Особое значение имеет введение гипса. Он используется с целью перевода растворимого геля альгината калия в нерастворимый гель альгината кальция:

K n Alg + n / 2 CaSO 4 => n / 2 K 2 SO 4 + Са n / 2 Alg

Однако, если эта реакция произойдет быстро, то вся масса превратится в чистый альгинат кальция - твердый и хрупкий материал, не отвечающий тре­бованиям, предъявляемым к оттискным материалам. С целью удлинения вре­мени, в течение которого масса находилась бы в эластичном состоянии, в нее вводят регуляторы желатинизации (ингибиторы), под действием которых процесс протекает плавно (карбонат натрия, фосфаты натрия и калия, оксалаты и др.).

Состав:

В состав альгинатных оттискных материалов входят:


Альгинат одновалентного катиона;

Сшивагент;

Регулятор скорости структурирования;

Наполнители;

Индикаторы;

–– корригирующие вкус и цвет вещества.

–– Альгинат калия 15%

–– Сульфат кальция 16%

–– Окись цинка 4%

–– Фторид титана 3%

–– Фосфат натрия 2%

–– Наполнитель 60%


Альгинат натрия, калия (чаще он является основным компонентом) представляет собой натриевую (калиевую) соль альгиновой кислоты, получае­мую из морских водорослей. Оптимальное его содержание в по­рошке составляет 20%.

Для обеспечения схватывания материала и превращения его в нерастворимый гель необходимо «сшить» линейные макромо­лекулы поливалентными катионами по карбоксильным группам с образованием сетчатой пространственной структуры. В качестве сшивагентов используются плохо растворимые в воде соли бария, свинца, стронция, кальция .

Сшивка - образование поперечных связей между линейными мак­ромолекулами, упрочняющих полимерный материал.

Сшивагенгы - вещества, обеспечивающие сшивку. Они подразде­ляются на отвердители (для полимеров) и вулканизирующие (для каучуков).

Скорость структурирования увеличивается за счет введения в материалы ее регуляторов: карбоната натрия, этиленгликоля и триэтаноламина (до 2%).

Для получения необходимой консистенции массы, исключения комкования при затвердевании, повышения механической прочно­сти и уменьшения усадки в альгинатные композиции вводят на­полнители: мел, диатомиты, белую сажу, двуокись кремния, органокремнеземы.

Наполнители - вещества, влияющие на прочность, твердость, усад­ку, теплопроводность, стойкость к действию агрессивных сред. Бы­вают минеральными и органическими, порошкообразными и волок­нистыми.

Традиционные альгинатные материалы являются двухкомпонентными системами "порошок - вода". Более современные композиции типа "паста -паста" содержат альгинатный золь и реагент (CaSo4).

Изначально в России наибольшее распространение получила классификация оттискных материалов Оксмана И.М..

  1. Кристаллизующиеся (гипс и цинкоксидэвгенольные).
  2. Термопластические.
  3. Эластические (агаровые).
  4. Полимеризующиеся.

Затем её модифицировал и предложил собственную классификацию оттискных материалов Нападов М.А. .

Классификация оттискных материалов по Нападову М.А. (1980).

I. Твердокристаллические оттискные материалы.

1. Гипс.

2. Цинкоксидэвгеноловые.

3. Цинкоксидгваяколовые.

II. Эластические оттискные материалы.

  1. Гидроколлоидные (агаровые).
  2. Альгинатные.
  3. Тиоколовые.
  4. Силиконовые.
  5. Полиэфирные.

III . Термопластические оттискные материалы.

1. Эпоксидные: Дентафоль.

2. На основе эфиров канифоли: МСТ-02, 03; Стенс; Акродент.

Все оттискные материалы по их свойствам, содержанию компонентов и способу применения можно разделить на две группы - обратимые и необратимые.

Материалы первой группы характеризуются тем, что из твердого или эластического состояния под действием температуры или других химических реакций переходят в пластичное состояние, а затем при охлаждении или окончании реакции вновь возвращаются в прежнее состояние.

Для материалов второй группы характерно то, что, будучи в пластичном состоянии в период получения оттиска, в результате химических реакций они переходят в эластичное состояние и в таком состоянии сохраняются длительное время. Переход в эластичное состояние этих материалов необратим.

В настоящее время существует международная классификация оттискных материалов, предложенная Nurt в 2002 году. В основу данной классификации положено состояние оттискного материала (наличие или отсутствие эластичности) после его затвердевания.

Классификация оттискных материалов по Nurt .

I. Твёрдые оттискные материалы.

  1. Гипс.
  2. Термопластичные компаунды.
  3. Цинкоксидэвгенольные.

II. Эластичные (гидроколлоидные).

  1. Обратимые - агаровые.
  2. Необратимые - альгинатные.

III . Эластомерные.

  1. Полисульфидные.
  2. Полиэфирные.
  3. Силиконовые, отверждаемые в реакции поликонденсации (С-силиконы).
  4. Силиконовые, отверждаемые в реакции полиприсоединения (А-силиконы).

Ряховский А.Н. и Мурадов М.А. (2006) считают, что наиболее полной, простой, логичной и удобной в использовании является следующая классификация оттискных материалов:

I . Неэластичные.

Nbsp; 1. Цинкоксидэвгеноловые пасты.

Nbsp; 2. Термопластические материалы.

Nbsp; 3. Гипсы.

Nbsp; 4. Бис-акрилаты.

II . Эластичные.

Nbsp; 1. Гидроколлоидные: а) альгинаты; б) агары.

Nbsp; 2. Безводные эластомеры: а) полисульфиды; б) полиэфиры; в) силиконы (А- и К- типов).

Ибрагимов Т.И., Марков Б.П., Цаликова Н.А. (2007) подразделяют оттискные материалы следующим образом:

I . Твердеющие.

Nbsp; 1. Гипс.

Nbsp; 2. Цинкоксидэвгенольные.

II . Термопластические.

III . Эластические.

Nbsp; 1.Гидроколлоиды: а) агаровые; б) альгинатные.

Nbsp; 2.Эластомеры: а) полисульфидные; б) полиэфирные; в) силиконовые (А- и К- типов).

Поюровская И.Я. (2008) предлагает следующую классификацию оттискных материалов:

I . Твёрдые.

Nbsp; 1. Химического твердения (необратимые): а) гипс; б) цинкоксидэвгенольные.

Nbsp; 2. Термического твердения (обратимые) - термопластические компаунды.

II . Эластичные.

Nbsp; 1.Гидроколлоидные: а) обратимые - агаровые; б) необратимые - альгинатные.

Nbsp; 2. Эластомерные: а) тиоколовые; б) полиэфирные; в) силиконовые - тип К - поликонденсационные и тип А - аддитивные.

13457 0

Оттискные материалы применяют для получения точного отпечатка зубов и тканей полости рта. По этому отпечатку или оттиску можно отливать модель, на которой изготавливают конструкции полных или частичных съемных зубных протезов, коронок, мостовидных протезов и вкладок.

В течение многих лет было создано большое разнообразие оттискных материалов и разработано множество способов для их применения в практике с целью получить материал для снятия оттисков с оптимальным сочетанием необходимых для этого свойств. Все оттискные материалы можно разбить на классы твердых и эластичных (Таблица 2.7.1).

Твердыми оттискными материалами невозможно снять оттиск поверхностей с поднутрениями, которые могут быть на зубах или костных тканях. Следовательно их применение ограничено получением оттисков у беззубых пациентов, у которых отсутствуют подобные поднутрения.

Эластичные оттискные материалы подразделяют нагидроколлоидные и эластомерные. С помощью этих материалов можно получать оттиски с тканей, имеющих поднутрения, их можно применять при протезировании пациентов с полным и частичным отсутствием зубов, а также для пациентов, полностью сохранивших зубы. Выбор подходящего материала будет зависеть от особенностей каждого конкретного случая.

На выбор оттискного материала также влияет применяемый способ снятия оттиска, значительное влияние оказывает выбор типа оттискной ложки, стандартной или индивидуальной. Такие ложки необходимы при снятии оттиска для удержания материала сразу после смешивания, введения его в рот и извлечения из него после отверждения оттискного материала. При отливании модели по оттиску ложки также служат опорой оттискному материалу.

В Таблице 2.7.2 представлено многообразие назначений и способов применения оттискных материалов. В некоторой степени выбор оттискной ложки зависит от вязкости материала.

Сразу после смешивания оттискной материал может быть очень жидким или текучим, и его невозможно будет использовать со стандартной оттискной ложкой. Потребуется изготовление индивидуальной ложки с более точным прилеганием.

Такую ложку можно сделать или из акрилового материала по предварительно изготовленной модели, или с помощью высоковязкого плотного материала, который помещают в стандартную ложку и после его отверждения получают индивидуальную ложку.

Некоторые оттискные материалы не обладают достаточной вязкостью для применил в стандартной ложке, к ним относятся цинк-оксид-эвгенольные, полиэфирные и полисульфидные эластомеры. Другие, такие как оттискные компаунды (термопластичные оттискные материалы), гипс, альгинатные и силиконовые материалы соответствующего состава, можно применять для снятия оттисков с помощью стандартной оттискной ложки. Хотя термопластичные компаунды можно применять со стандартной оттискной ложкой, но получаемые при этом оттиски не воспроизводят точно поверхностные детали, если их не уточняют дополнительным оттиском с помощью текучего цинк-оксид-эвгенольного материала. Подобным образом и альгинаты, когда их используют с применением стандартной оттискной ложки, не всегда дают требуемую степень точности, в таком случае лучше снимать оттиск с индивидуальной ложкой.

Клиническое значение

Выбор оттискного материала и типа ложки зависит от требуемого уровня размерной точности и воспроизводимости деталей поверхности.

Основы стоматологического материаловедения
Ричард ван Нурт