Геометрический и физический смысл производной примеры. Определение производной функции, ее геометрический и физический смысл

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B (x ; f (x )). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆ x ; ВС =∆у; tgβ =∆ y /∆ x .

Так как АС || Ox , то Ð ALO = Ð BAC = β (как соответственные при параллельных). Но Ð ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a ), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tg β =∆ y /∆ x , то получим

или tg a = f "(x 0 ), так как
a -угол накло­на касательной к положительному направлению оси Ох

, по определению производной. Но tg a = k - угловой коэффициент каса­тельной, значит, k = tg a = f "(x 0 ).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x (t ). Известно (из курса физики), что средняя скорость за промежуток времени [ t 0 ; t 0 + ∆ t ] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

V ср = ∆ x /∆ t . Перейдем к пределу в последнем равенстве при ∆ t → 0.

lim V ср (t ) = n (t 0 ) - мгновенная скорость в момент времени t 0 , ∆ t → 0.

а lim = ∆ x /∆ t = x "(t 0 ) (по определению производной).

Итак, n (t ) = x "(t ).

Физический смысл производной заключается в следующем: произ­водная функции y = f ( x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u (t ) = x "(t ) - скорость,

a (f ) = n "(t ) - ускорение, или

a (t ) = x "(t ).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ (t ) - изменение угла от времени,

ω = φ "(t ) - угловая скорость,

ε = φ "(t ) - угловое ускорение, или ε = φ "(t ).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m (х) - масса,

x Î , l - длина стержня,

р = m "(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = - kx , x – переменная координата, k - коэффициент упругости пружины. Положив ω 2 = k / m , получим дифференциальное уравнение пружинного маятника х"(t ) + ω 2 x(t ) = 0,

где ω = √ k /√ m частота колебаний (l / c ), k - жесткость пружины (H / m ).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin (ωt + φ 0 ) или у = Acos (ωt + φ 0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Цели урока:

Образовательные:

  • Создать условия для осмысленного усвоения учащимися физического смысла производной.
  • Содействовать формированию умений и навыков практического использования производной для решения разнообразных физических задач.

Развивающие:

  • Способствовать развитию математического кругозора, познавательного интереса у учащихся через раскрытие практической необходимости и теоретической значимости темы.
  • Обеспечить условия для совершенствования мыслительных умений учащихся: сравнивать, анализировать, обобщать.

Воспитательная:

  • Содействовать воспитанию интереса к математике.

Тип урока: Урок освоения новых знаний.

Формы работы: фронтальная, индивидуальная, групповая.

Оборудование: Компьютер, интерактивная доска, презентация, учебник.

Структура урока:

  1. Организационный момент, постановка цели урока
  2. Изучение нового материала
  3. Первичное закрепление нового материала
  4. Самостоятельная работа
  5. Итог урока. Рефлексия.

Ход урока

I. Организационный момент, постановка цели урока (2 мин.)

II . Изучение нового материала (10 мин.)

Учитель: На предыдущих уроках мы познакомились с правилами вычисления производных, научились находить производные линейной, степенной, тригонометрических функций. Узнали, в чем заключается геометрический смысл производной. Сегодня на уроке мы узнаем, где в физике применяется данное понятие.

Для этого вспомним определение производной (Слайд 2)

Теперь обратимся к курсу физики (Слайд 3)

Учащиеся рассуждают, вспоминают физические понятия и формулы.

Пусть тело движется по закону S(t)= f(t) Рассмотрим путь, пройденный телом за время от t 0 до t 0 + Δ t, где Δt – приращение аргумента. В момент времени t 0 телом пройден путь S(t 0), в момент t 0 +Δt – путь S(t 0 +Δt). Поэтому за время Δt тело прошло путь S(t 0 +Δt) –S(t 0), т.е. мы получили приращение функции. Средняя скорость движения тела за этот промежуток времени υ==

Чем меньше промежуток времени t, тем точнее мы можем узнать, с какой скоростью движется тело в момент t. Устремив t →0, получим мгновенную скорость – числовое значение скорости в момент t этого движения.

υ= , при Δt→0 скорость – есть производная от пути по времени.

Слайд 4

Вспомним определение ускорения.

Применяя изложенный выше материал можно сделать вывод, что при t а(t)= υ’(t) ускорение – есть производная от скорости.

Далее на интерактивной доске появляются формулы силы тока, угловой скорости, ЭДС и т.д. Учащиеся дописывают мгновенные значения данных физических величин через понятие производной. (При отсутствии интерактивной доски использовать презентацию)

Слайды 5-8

Вывод формулируют учащиеся.

Вывод: (Слайд 9) Производная – это есть скорость изменения функции. (Функции пути, координаты, скорости, магнитного потока и т.д.)

υ (х)=f ’(х)

Учитель: Мы видим, что связь между количественными характеристиками самых различных процессов исследуемых физикой, техническими науками, химией, аналогична связи между путем и скоростью. Можно привести множество задач, для решения которых также необходимо находить скорость изменения некоторой функции, например: нахождение концентрации раствора в определенный момент, нахождение расхода жидкости, угловой скорости вращения тела, линейной плотности в точке и т.д. Некоторые из таких задач мы сейчас решим.

III. Закрепление полученных знаний (работа в группах) (15 мин.)

С последующим разбором у доски

Перед решением задач уточнить единицы измерения физических величин.

Скорость – [м/с]
Ускорение – [м/с 2 ]
Сила – [Н]
Энергия – [Дж]

Задание 1 группе

Точка движется по закону s(t)=2t³-3t (s – путь в метрах, t – время в секундах). Вычислите скорость движения точки, ее ускорение в момент времени 2с

Задание 2 группе

Маховик вращается вокруг оси по закону φ(t)= t 4 -5t. Найдите его угловую скорость ω в момент времени 2с (φ – угол вращения в радианах, ω – угловая скорость рад/с)

Задание 3 группе

Тело массой 2 кг движется прямолинейно по закону х(t)=2-3t+2t²

Найдите скорость тела и его кинетическую энергию через 3с после начала движения. Какая сила действует на тело в этот момент времени? (t измеряется в секундах, х – в метрах)

Задание 4

Точка совершает колебательные движения по закону х(t)=2sin3t. Докажите, что ускорение пропорционально координате х.

IV. Самостоятельное решение задач №272, 274, 275, 277

[А.Н.Колмогоров, А.М.Абрамов и др. «Алгебра и начала анализа10-11 класс»] 12 мин

Дано: Решение:
x(t)=-
______________
t=?
υ(t)=?
υ(t)=х’(t);
υ(t)= (-)’=·3t²+6t= +6t;
a(t)=υ’(t)
a(t)=( +6t)’=·2t+6=-t+6;
a(t)=0;
-t+6=0;
t=6;
υ(6)=+6·6=-18+36=18м/с
Ответ: t=6c; υ(6)= 18м/с

Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.
Производная функции имеет такой физический смысл: производная функции в заданной точке - скорость изменения функции в заданной точке.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

Или же


Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:





К основным правилам дифференцирования относят:
1) вынесение постоянного множителя за знак производной
2) производная суммы, производная разности
3) производная произведения функций
4) производная частного двух функций (производная дроби)

Примеры.
Докажем формулу: По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции
Решение: Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.





Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.
Примеры .
С помощью дифференциала вычислить приближенно
Для вычисления данного значения применим формулу из теории
Введем в рассмотрение функцию а заданную величину представим в виде
тогда Вычислим

Подставляя все в формулу, окончательно получим
Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.
Предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

1)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры .

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

Экстремумы Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .
Под окрестностью точки понимают интервал , где - достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Чтобы исследовать функцию на монотонность , воспользуйтесь следующей схеме:
- Найдите область определения функции;
- Найдите производную функции и область определения производной;
- Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;
- На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней - нули производной;
- Определите знаки производной на каждом из полученных промежутков;
- По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;
- Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы :
1) Найти производную f ′(x).
2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).
3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры .

выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.


Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Нахождение интервалов на выпуклость:

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х.
Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример : Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.
Решение: Областью определения этой функции является все множество действительных чисел.
Найдем вторую производную.


Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

19) Асимптоты функции. Примеры.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

ПРИМЕР:

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

a.
Найти ОДЗ и точки разрыва функции.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x) .

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy , а для нечетной относительно начала координат.

Примеры. Исследовать функции и построить их графики.

Область определения функции D(у)= (–∞; +∞). Точек разрыва нет.

Пересечение с осью Ox : x = 0,у= 0.

Функция нечетная, следовательно, можно исследовать ее только на промежутке }