Как работают т-клетки иммунной системы. Развитие т- и в-лимфоцитов Процесс формирования эффекторных лимфоцитов

Развитие Т-клеток в тимусе происходит под непосредственным влиянием и в результате прямых контактов тимоцитов со стромальными эпителиоцитами, клетками-кормилицами, макрофагами тимуса, а также под влиянием гормонов тимуса (α 1 -,β 1 -,β 4 -тимозина, тимопоэтина, тимического гуморального фактора (м.м 3220), тимостимулина (м.м 12000). Под влиянием гормонов тимуса протекают процессы пролиферации и дифференцировки тимоцитов. В тимусе Т-клетки в процессе своего развития приобретают способность распознавать антиген в контексте с молекулами ГКГ и толерантность к собственным тканевым антигенам. Морфогенез Т-лимфоцитов в тимусе приведен на рисунке.

Наиболее ранней Т-клеткой, появляющейся в тимусе, является протимоцит, который формируется в органе из пре-Т-лимфоцита, мигрировавшего сюда из костного мозга. Протимоциты заселяют кортикальную зону тимуса. Эти клетки характеризуются наличием в их цитоплазме терминальной нуклеотидилтрансферазы (TdT) (ДНК-полимеразы), обеспечивающей встраивание дополнительных нуклеотидов в сегменты ДНК, кодирующие вариабельные участки Т-клеточного рецептора. Созревающие кортикальные тимоциты вначале экспрессируют маркер CD-1, специфичный только для тимоцитов коркового слоя, затем – постоянный маркер зрелых Т-клеток CD2. Далее, по мере созревания, тимоциты экспрессируют маркер, специфичный для клеток воспаления /хелперов – CD4 и маркер, специфичный для цитотоксических клеток– CD8. Затем клетки начинают экспрессировать Т-клеточный рецептор (ТКР), соединенный с комплексом Т3 (CD3). После перемещения клеток из коркового вещества тимуса в мозговое вещество часть клеток экспрессирует молекулы только CD4, а другая часть клеток – только CD8. В итоге происходит разделение всей популяции тимоцитов на 2 фенотипа: клетки, экспрессирующие маркеры CD4, и клетки, экспрессирующие маркеры CD8. Таким образом, появляется два типа клеток: один, имеющий фенотип CD2 + , ТКР + , CD3 + , CD4 + , обладающий индукторными-хелперными свойствами, и второй, имеющий фенотип CD2 + , TKP + , CD3 + , CD8 + , обладающий цитотоксическими свойствами. Вопрос о формировании в тимусе отдельной линии клеток – Т-супрессоров, обладающих собственными фенотипическими маркерами, до сих пор остается открытым.

Антигены главного комплекса гистосовместимости (ГКГ) па Т-клетках экспрессируются, начиная со стадии протимоцита. В процессе появления Т-клеток со специфическими свойствами (клеток индукторов/хелперов и цитотоксических клеток) тимоциты теряют маркеры TdT и CD1, которые содержат только незрелые Т-клетки – тимоциты коркового слоя тимуса.

Маркеры, появляющиеся в процессе дифференцировки лимфоцитов, получили название дифференцировочных маркеров (CD) (cluster of differentiation) или дифференцировочных антигенов.

По мере созревания Т-клеток в тимусе они приобретают рецепторы к митогенам и способность отвечать на ФГА и Кон-А бласттрансформацией.

Статья на конкурс «био/мол/текст»: Клетки иммунной системы путешествуют по лимфе и кровотоку в поисках антигена, который можно распознать и начать защитную иммунную реакцию. Но значительная часть Т-лимфоцитов находится не в крови и не в лимфоузлах, а в органах, не относящихся к иммунной системе. Эта статья рассказывает, чем заняты резидентные Т-клетки тканей, как они туда попадают и какие преимущества для медицины может дать их изучение.

Обратите внимание!

Эта работа заняла первое место в номинации «Лучшая статья по иммунологии» конкурса «био/мол/текст »-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Адекватная защитная реакция при заражении патогенным вирусом - уничтожить зараженные клетки, не допустив распространения инфекции по организму и гибели большего числа клеток. Зараженная вирусом клетка может заметить в себе вирус и начать аутофагию либо апоптоз - или получить инструкцию для программируемой клеточной гибели от Т-киллера.

Классическая иммунология человека построена на изучении иммунных клеток крови просто в силу того, что анализ крови можно взять у любого пациента, исследовать в норме и в патологии. Именно на клетках крови была выстроена классификация Т-лимфоцитов: деление на Т-киллеры и Т-хелперы, которые проверяют антигенную специфичность Т-киллеров, выдают им «лицензию на убийство» и способны управлять всем ходом иммунного ответа через сигнальные растворимые молекулы - цитокины. А также более позднее выделение из ветви Т-хелперов группы регуляторных Т-клеток, подавляющих избыточный адаптивный иммунитет.

Но как нам напоминает реклама йогурта, значительная часть клеток иммунной системы сосредоточена вокруг слизистой оболочки пищеварительного тракта и в других тканях. В то время как в 5–6 литрах крови взрослого человека находится около 6–15 миллиардов лимфоцитов, то число Т-клеток, находящихся в эпидермисе и коже, оценивают в 20 млрд , в печени взрослого мужчины - еще 4 млрд . Достаточно ли изучения клеток крови для полного описания функций Т-клеток, если в периферических органах Т-клеток больше, чем в кровотоке? И достаточно ли классических субпопуляций, чтобы описать все типы Т-клеток, находящихся в организме человека?

Жизненный цикл Т-лимфоцита

Каждая Т-клетка после сборки Т-клеточного рецептора проходит тестирование на функциональность случайно собранного рецептора (положительная селекция) и отсутствие специфичности к собственным антигенам организма (отрицательная селекция), то есть на отсутствие очевидной аутоиммунной угрозы. Этапы селекции происходят в вилочковой железе, тимусе; при этом более 90% клеток-предшественников погибает, не сумев правильно собрать рецептор либо пройти селективный отбор. Выжившие Т-клетки пролиферируют и выходят из тимуса в кровоток - это наивные Т-лимфоциты, не встречавшиеся с антигеном. Наивная Т-клетка циркулирует по крови и периодически заходит в лимфоузлы, где в Т-клеточной зоне контактирует со специализированными антигенпрезентирующими клетками.

После встречи с антигеном в лимфоузле Т-клетка приобретает способность снова делиться - становится предшественницей Т-клеток памяти (T SCM , stem cell memory T cells). Cреди клона её потомков появляются клетки центральной памяти (T CM), короткоживущие эффекторные клетки, осуществляющие иммунную реакцию (SLEC или T EMRA -клетки), и эффекторные клетки-предшественники памяти T EM , в свою очередь при делении дающие T EMRA . Все эти клетки выходят из лимфоузла и перемещаются по крови. Эффекторные клетки затем могут выйти из кровотока для осуществления иммунной реакции в периферической ткани органа, где находится патоген. Что потом - снова путешествие по крови и лимфоузлам?

Рисунок 1. Эмиграция эффекторной Т-клетки в ткань при вирусной инфекции. Сигналы воспаления от зараженных эпителиальных клеток при участии резидентных клеток передаются эндотелию сосудов, клетки эндотелия привлекают эффекторные Т-клетки хемокинами CXCL9, CXCL10. Роллинг: при движении по посткапиллярной венуле в ткани эффекторная клетка замедляется, образуя временные контакты между Е-селектинами и P-селектинами на клетках эндотелия. Остановка: эффекторная клетка плотно прикрепляется к эндотелию при взаимодействии LFA-1 и других альфа-интегринов с ICAM-1/VCAM-1/MAdCAM-1 (на эндотелии). Трансмиграция: эффекторная Т-клетка связывает эндотелиальный JAM-1 молекулами PECAM, CD99, LFA-1 и проникает через клетки эндотелия в подслизистую. Рисунок из .

Процесс трансмиграции лейкоцита.

Клетки стромы, то есть основы лимфоузла, выделяют сигнальные вещества для того, чтобы позвать Т-клетку в лимфоузел - хемокины. Распознают хемокины лимфоузлов рецепторы хоуминга CCR7 и CD62L. Но на эффекторных клетках отсутствуют оба этих рецептора. Из-за этого долгое время было загадкой, как эффекторные клетки могут попасть из периферической ткани обратно во вторичные лимфоидные органы - селезенку и лимфоузлы.

В то же время стали накапливаться данные о различиях в репертуарах мембранных маркеров и профилях транскрипции между Т-клетками памяти в крови (T EM) и Т-клетками памяти в других органах, которые никак не укладывались в концепцию постоянной миграции Т-клеток между тканями и кровью. Решено было выделить новую субпопуляцию: резидентные клетки памяти, которые населяют определенный орган и не рециркулируют - T RM -клетки .

Происхождение резидентных Т-клеток тканей

Откуда впервые появляются резидентные клетки ткани? Это потомки эффекторных клеток, которые потеряли способность рециркулировать. Некоторые периферические для иммунной системы ткани, например, слизистая тонкого кишечника, брюшная полость, - позволяют эффекторным Т-лимфоцитам проникать внутрь свободно; другие - очень ограниченно, большой поток эффекторных Т-клеток в эти ткани наблюдается только при реакции воспаления. К тканям второго типа относятся отделенные барьером от иммунной системы, к примеру, головной и спинной мозг, а также многие другие: периферические ганглии, слизистые половых органов, легкие, эпидермис, глаза. Разница между двумя типами тканей - в экспрессии дополнительных молекул хоуминга для эффекторных Т-клеток, например, молекулы адгезии для проникновения в эпителий MadCAM-1 .

Рисунок 3. «To home or not to home?» - сложный выбор эффекторной клетки. To home - процесс хоминга, или миграции Т-клеток, например, в наиболее привычное для наивных клеток место - лимфоузел. Альтернатива - не отправляться в путешествие по организму и превратиться в резидентную клетку ткани.

Резидентные Т-клетки в старении тканей человека

Карта соотношений присутствия отдельных субпопуляций Т-клеток в разных органах человека, как ни странно, была составлена только в 2014 году. Команда Донны Фарбер из медицинского центра Колумбийского Университета Нью-Йорка провела сравнение фенотипов Т-клеток, выделенных из крови и тканей доноров органов всех возрастных групп от 3 до 73 лет, всего по 56 донорам . Анализ субпопуляций Т-клеток при помощи проточной цитофлуориметрии подтвердил многие данные, полученные методами с меньшим разрешением и меньшей статистикой, и некоторые черты описания иммунной системы, перенесенные с иммунологии мыши на человека, к примеру, снижение содержания наивных Т-лимфоцитов при старении во всех органах.

Уменьшение числа наивных Т-клеток с возрастом связано с быстрым старением тимуса (вилочковой железы), в котором будущие Т-клетки проходят этапы сборки Т-клеточного рецептора, проверку работоспособности рецептора и селекцию на отсутствие аутоиммунного потенциала. Важно не только снижение абсолютной численности наивных Т-клеток, но и уменьшение разнообразия репертуара Т-клеточных рецепторов, а значит, и возможности сформировать адаптивный иммунный ответ на ранее незнакомую инфекцию . Для наивных Т-киллеров подтвердилось прогрессирующее падение численности в крови и лимфоузлах, хотя для наивных Т-хелперов отрицательная корреляция численности с возрастом в данном исследовании оказалась значительной только во вторичных лимфоидных органах, но не в крови.

Выделение Т-лимфоцитов памяти, эффекторных клеток памяти и короткоживущих эффекторных клеток из слизистых легких, тонкого и толстого кишечника, паховых и мезентериальных лимфоузлов доноров органов позволило впервые оценить динамику данных популяций в тканях человека при старении. Доля центральных клеток памяти ожидаемо растет с течением жизни, в соответствии с ростом числа инфекций, которые успели встретиться организму и попасть в библиотеку памяти иммунной системы. Растет и процент терминально дифференцированных эффекторных Т-киллеров (T EMRA), но только в лимфоузлах и в селезенке; в нелимфоидных тканях численность T EMRA падает. Эффекторные клетки памяти T EM стремительно заполняют нишу для Т-клеток в тканях ребенка, быстро, примерно к 12 годам вытесняя наивные Т-клетки. Короткоживущие терминально дифференцированные Т-киллеры чаще всего встречаются в крови, селезенке и слизистых легких в любом возрасте, а вот среди Т-хелперов эта субпопуляция представлена исчезающе малым числом клеток. Аналогично мало центральных клеток памяти среди Т-киллеров, преимущественно они находятся в слизистых двух барьерных тканей: легких и кишечника.

Широкими мазками карту распределения Т-лимфоцитов человека можно обрисовать так: наивные Т-клетки путешествуют по крови и периодически заходят во вторичные лимфоидные органы, киллеры-T EMRA находятся в крови, селезенке и легких. Для центральных клеток памяти, судя по всему, характерно более индивидуальное распределение по тканям, чем для других субпопуляций: во всяком случае, закономерностей динамики при старении разных тканей выявить не удалось. Эффекторные клетки памяти, включающие в себя и T RM субпопуляцию, доминируют среди Т-клеток слизистых барьерных тканей. В целом, при старении Т-клеточного иммунитета нелимфоидные ткани большую возрастную динамику типов Т-клеток . Стабильность тканевых клеток проще объяснить, если разобраться, какие из эффекторных клеток T EM остаются в ткани, становятся резидентными T RM , и из каких событий состоит их жизнь после отказа от путешествий по организму.

Рисунок 4. Пути циркуляции Т-лимфоцитов различных субпопуляций. Tnaive - наивные Т-клетки, вместе с субпопуляцией T CM перемещаются по крови и заходят в Т-клеточную зону различных лимфоузлов, в капиллярах тканей встречаются, но в ткань не выходят (красная траектория). Эффекторные Т-клетки (голубой цвет) перемещаются по лимфе и кровотоку, при попадании в лимфоузел не заходят в Т-клеточные зоны (центр лимфоузла) - траектория лилового цвета. Резидентные Т-клетки тканей (показаны зеленым в коже и различными цветами в слизистых) перемещаются только внутри ткани - траектория зеленого цвета. Рисунок из , с изменениями.

Как отличить резидентные клетки тканей от примесей клеток крови?

Резидентные Т-клетки корректно, но неудобно каждый раз определять по способности индивидуальной клетки мигрировать в лимфоузлы, поэтому необходимо составить список характерных признаков, по которым можно определить принадлежность к этой субпопуляции. Резидентные Т-лимфоциты в тканях-естественных барьерах организма (например, в легких и слизистой тонкого кишечника) немного похожи на классические эффекторные клетки крови: экспрессируют маркер активированных клеток CD69, причем экспрессия стабильна в течении жизни при взрослении и старении и характерна для всех нелимфоидных тканей. Но вдобавок CD69 колокализуется с маркером CD103, который обозначает группу молекул адгезии - интегринов, способствующих прикреплению резидентной Т-клетки к эпителию и к фибробластам в подслизистой выбранного органа. Для эффекторных Т-клеток во вторичных лимфоидных органах экспрессия CD103-интегринов совершенно нехарактерна: T EM клетки постоянно сохраняют подвижный фенотип.

У карты, составленной коллективом Донны Фарбер, есть крупный недочет: неясно, насколько чисто удается выделить Т-лимфоциты из органа, какую долю анализируемых клеток на самом деле составляют Т-лимфоциты крови из капилляров внутри органа.

Особенно остро вопрос загрязнения клетками крови стоит для легких, не случайно субпопуляционный состав Т-клеток легких неожиданно похож на Т-клетки крови и лимфоузлов. Вопрос загрязнения клетками крови был изящно решен для Т-лимфоцитов мыши: подопытных мышей заражали вирусом лимфоцитарного хориоменингита после пересадки трансгенного клона Т-клеток P14, специфичного к данному вирусу. В результате при инфекции большая часть циркулирующих клеток была представлена вирус-специфичным клоном P14, и его присутствие в тканях можно было отследить иммунофлуоресценцией по P14-специфичному антителу. Перед тем, как мышей убивали, им в кровь вводили антитело к маркеру Т-киллерных клеток анти-CD8, оно быстро распространялось по кровотоку и связывалось со всеми Т-киллерами в крови (но не в тканях). При микроскопии срезов органов легко было отличить резидентные киллерные T RM от только недавно вышедших из крови в орган клеток, помеченных анти-CD8 антителом . Численность резидентных клеток, подсчитанная этим методом, превышала в 70 раз определенные методом проточной цитометрии числа; разница меньше, чем в два раза, наблюдалась только для резидентных клеток лимфоузлов и селезенки: получается, стандартные методики выделения лимфоцитов из органов плохо подходят для анализа киллерных резидентных клеток и существенно занижают размеры популяции.

Работа резидентных Т-клеток: не стоит путать туризм с эмиграцией

Мышиные резидентные клетки тканей в нормальной ситуации почти не перемещаются внутри нелимфоидной ткани и достаточно прочно прикреплены молекулами адгезии к строме органа. Когда резидентные макрофаги той же ткани секрецией цитокинов инициируют реакцию воспаления, Т RM приобретают большую подвижность и патрулируют близлежащий эпителий в поисках зараженных клеток.

Если воспалительная реакция усиливается, то клетки понимают это как сигнал о подкреплении: к работе патрульных T RM подключаются вновь прибывающие из крови T CM и T EM -клетки. Эти клетки крови куда более подвижны и лучше перемещаются в эпителии: значит ли это, что именно в крови находятся готовые действовать Т-киллеры среди T EM , а CD8+ T RM выполняют в ткани хелперные и регуляторные функции?

C одной стороны, Т-хелперы по спектру Т-клеточных рецепторов более тканеспецифичны, то есть пересечений между репертуарами Т-клеточных рецепторов клеток, взятых из разных тканей, совсем мало, тогда как клетки одного клона Т-киллера встречаются в разных тканях среди T EM . Спектр функций и репертуар антигенной специфичности T RM еще предстоит исследовать, но способности к уничтожению зараженных клеток тканей у T RM -киллеров точно есть. Более того, афинность вирус-специфичных Т-клеточных рецепторов (ТКР) резидентных киллерных клеток выше, чем у вирус-специфичных клеток центральной памяти в модели мышиной инфекции полиомавирусом, протекающей в ткани головного мозга .

Однако размер популяции Т-клеток зависит не только от специфичности Т-клеточных рецепторов к инфекциям, которые раньше протекали в данном органе, но и от гомеостатической пролиферации Т-клеток - размножения более удачливых клеток для заполнения емкости органа по числу Т-лимфоцитов. По маркерам CD28 и CD127 на поверхности клеток можно отличить недавно и давно активированные через Т-клеточный рецептор клетки от тех, которые получили только гомеостатический сигнал к пролиферации от фактора роста IL-7. При старении ткани гомеостатическое размножение клеток начинает преобладать над пролиферацией активированных через ТКР клеток.

Независимо от Т-клеточных рецепторов часто функционируют NKT-клетки, крупный тип резидентных клеток печени, встречающиеся и в других тканях. Они могут быть активированы NK-клеточными рецепторами через распознавание не индивидуальных антигенов, а общих молекулярных паттернов опасности и тканевого стресса. При активации CD8 + NKT-клетки выделяют цитотоксические гранулы и лизируют подозрительные клетки ткани, к примеру, единичные опухолевые клетки и зараженные вирусами клетки, экспрессирующие и выставляющие на внешней мембране MHC-подобные стрессорные молекулы. При старении тенденция T RM к активации без Т-клеточного рецептора через NK-клеточные рецепторы или цитокиновые сигналы может приводить к ошибочному лизису клеток ткани, недостаточному контролю над хронически зараженными или перерождающимися участками эпителия.

Патологические проявления, связанные с работой резидентных Т-клеток включают в себя органоспецифичные аутоиммунные синдромы и синдромы хронического воспаления в ткани. Примеры хронического воспаления, поддерживаемого резидентными Т-лимфоцитами - контактный дерматит и псориаз, а механизмом служит выделение воспалительных факторов IL-17 резидентными Т-киллерами и IL-22 резидентными Т-хелперами дермы. CD8+ эффекторные Т-киллеры, находящиеся в головном мозге, похожи по совокупности мембранных молекул-маркеров на T RM кожи, кишечника и легких и способны подталкивать развитие перемежающегося рассеянного склероза при периодических выбросах воспалительных цитокинов; неясно, однако, есть ли в норме в головном мозге T RM популяция или же это Т-лимфоциты, оставшиеся в ткани после нейротропной вирусной инфекции .

Функции резидентных клеток памяти в норме, при отсутствии инфекции или хронического воспаления, могут включать в себя cross-talk (взаимную регуляцию преимущественно через секрецию цитокинов и костимуляторные молекулы) с неклассическими малоизученными лимфоидными клетками, такими как ассоциированные со слизистыми гамма/дельта Т-клетки, несущие альтернативный вариант сборки Т-клеточного рецептора; или лимфоидные клетки врожденного иммунитета (innate lymphoid cells, ILC), которые делят с Т-и В-лимфоцитами общие черты эпигенетического ландштафта, но не имеют Т-/В- или NK-клеточных рецепторов .

T RM клетки контактируют с антигенпрезентирующими клетками тканей - это дендритные клетки кожи и резидентные макрофаги тканей. Резидентные миелоидные клетки в разных тканях дифференцированы и слабо похожи друг на друга. К примеру, макрофаги маргинальной зоны селезенки, макрофаги печени и микроглия (макрофаги мозга) будут сильно отличаться и по морфологии, и по спектру функций. Кроме обнаружения антигенов в ткани, резидентные макрофаги заняты регуляцией процессов старения и самообновления тканей, в частности, выделяют факторы роста и цитокины, стимулирующие деление стволовых клеток тканей. В жировой ткани, к примеру, макрофаги стимулируют дифференцировку новых жировых клеток, но при переходе в активированное M1-состояние, запускают воспаление и вместо дифференцировки заставляют увеличиваться и набухать имеющиеся жировые клетки. Сопутствующие изменения метаболизма жировой ткани приводят к накоплению жировой массы и в последние годы связываются с механизмами развития ожирения и диабета II типа. В коже цитокины, выделяемые макрофагами и резидентными гамма/дельта Т-клетками стимулируют деление стволовых клеток при регенерации эпидермиса и стволовых клеток волосяных фолликулов . Можно предположить, что хелперные T RM клетки при патрулировании эпителия и образовании контактов с тканевыми макрофагами могут модулировать спектр и объем выделяемых последними факторов роста для стволовых клеток, воспалительных цитокинов и факторов ремоделирования эпителия, и тем самым участвовать в обновлении тканей.

Рисунок 5. Предполагаемые функции резидентных Т-лимфоцитов тканей. Часть функций может выполняться во взаимодействии с резидентными макрофагами (см. пояснения в тексте) .

Что изучение Trm может дать медицине?

Понимание принципов работы резидентных Т-клеток абсолютно необходимо для борьбы с инфекциями, которые не поступают сразу в кровь, а проникают в организм через барьерные ткани - то есть, для подавляющего большинства инфекций. Рациональный дизайн вакцин для защиты от этой группы инфекций может быть направлен именно на усиление первого этапа защиты с помощью резидентных клеток: ситуация, при которой оптимально активированные специфичные к антигену клетки элиминируют патоген в барьерной ткани куда выгоднее, чем запуск острого воспаления для вызова Т-лимфоцитов из крови, поскольку меньше повреждается ткань.

Репертуар Т-клеточных рецепторов клеток, ассоциированных со слизистыми барьерных тканей, считается частично вырожденным и публичным, то есть идентичным для многих людей в популяции. Тем не менее, искажения при выделении Т-клеток из органов, перекос данных в результате отбора только определенных европеиодных доноров в когорты и общее небольшое количество накопленных данных секвенирования не дают уверенности в публичности репертуаров Т-клеточных рецепторов T RM -клеток. Хотя это было бы удобно, дизайн вакцин мог бы сводиться к поиску и модификации наиболее аффинных и иммуногенных пептидов из патогена, взаимодействующих с одним из публичных вариантов ТКР в барьерной для этого патогена ткани.

Конечно, представления о том, какие Т-клеточные рецепторы несут на своей поверхности T RM -клетки недостаточно для того, чтобы эффективно манипулировать иммунными реакциями в ткани. Предстоит детально изучить факторы, влияющие на заселение тканей определенными клонами Т-клеток и разобраться в механизмах активации местного тканевого иммунитета и индукции толерантности T RM . Как заселяются ниши Т-лимфоцитов в слизистых у ребенка до встречи с большим числом патогенов и, соответственно, до формирования значительного пула эффекторных Т-клеток памяти - предшественников резидентных клеток и клеток центральной памяти? Почему и как вместо классической активации лимфоцитов формируется игнорирование, реакция толерантности к микробам непатогенной флоры слизистых? Эти вопросы стоят на повестке дня в изучении резидентных клеток иммунной системы.

Определение закономерностей хоуминга Т-лимфоцитов в определенные ткани может дать преимущество в клеточной иммунотерапии опухолевых заболеваний. Теоретически, киллерные Т-клетки нужной специфичности к опухолевому антигену, активированные in vitro , должны убивать опухолевые клетки пациента. На практике подобная иммунотерапия осложняется тем, что опухолевые клетки способны подавлять иммунные реакции и приводить в неактивное состояние анергии приближающиеся к опухоли Т-киллеры. Зачастую в массе растущей опухоли и вокруг неё накапливаются анергичные Т-лимфоциты, в первую очередь, T RM данной ткани. Из множества инъецированных пациенту активных опухолеспецифичных Т-клеток до цели дойдут немногие, и даже они могут оказаться практически бесполезными в иммуносупрессивном микроокружении опухоли.

Расшифровка механизмов, которые обеспечивают попадание конкретных клонов Т-клеток в определенные ткани, может позволить более эффективно направлять к опухоли сконструированные в лаборатории Т-лимфоциты и приблизить эру доступной персонализированной иммунотерапии.

Quantifying memory CD8 T cells reveals regionalization of immunosurveillance . Cell . 161 , 737–749;

  • Frost E.L., Kersh A.E., Evavold B.D., Lukacher A.E. (2015). Cutting edge: resident memory CD8 T cells express high-affinity TCRs . J. Immunol. 195 , 3520–3524;
  • Park C.O. and Kupper T.S. (2015). The emerging role of resident memory T cells in protective immunity and inflammatory disease . Nat. Med. 21 , 688–697;
  • Schluns K.S. and Klonowski K. Diverse functions of mucosal resident memory T cells . E-book, 2015;
  • Godfrey D.I., Uldrich A.P., McCluskey J., Rossjohn J., Moody D.B. (2015). The burgeoning family of unconventional T cells . Nat. Immunol. 16 , 1114–1123;
  • Castellana D., Paus R., Perez-Moreno M. (2014). Macrophages contribute to the cyclic activation of adult hair follicle stem cells . PLoS Biol. 12 , e1002002;
  • Rodero M.P. and Khosrotehrani K. (2010). Skin wound healing modulation by macrophages . Int. J. Clin. Exp. Pathol. 3 (7), 643–653;
  • Farber D., Yudanin N., Restifo N.P. (2014). Human memory T cells: generation, compartmentalization and homeostasis . Nat. Rev. Immunol. 14 , 24–35..
    • агаммаглобулинемия (agammaglobulinaemia ; а- + гаммаглобулины + греч. haima кровь; син.: гипогаммаглобулинемия, синдром дефицита антител) -- общее название группы болезней, характеризующихся отсутствием или резким снижением уровня иммуноглобулинов в сыворотке крови;

      аутоантигены (ауто- + антигены) -- собственные нормальные антигены организма, а также антигены, возникающие под действием различных биологических и физико-химических факторов, по отношению к которым образуются аутоантитела;

      аутоиммунная реакция -- иммунная реакция организма на аутоантигены;

      аллергия (allergia ; греч. allos другой, иной + ergon действие) -- состояние измененной реактивности организма в виде повышения его чувствительности к повторным воздействиям каких-либо веществ или к компонентам собственных тканей; в основе аллергии лежит иммунный ответ, протекающий с повреждением тканей;

      иммунитет активный иммунитет, возникающий в результате иммунного ответа организма на введение антигена;

      Основными клетками, осуществляющими иммунные реакции, являются Т- и В-лимфоциты (и производные последних – плазмоциты), макрофаги, а также ряд взаимодействующих с ними клеток (тучные клетки, эозинофилы и др.).

    • Лимфоциты

    • Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты , В-лимфоциты и так называемые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недифференцированных лимфоидных костномозговых предшественников и при дифференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологическими методами. 0-лимфоциты (нулевые) лишены поверхностных маркеров и рассматриваются как резервная популяция недифференцированных лимфоцитов.

      Т-лимфоциты - самая многочисленная популяция лимфоцитов, составляющая 70-90% лимфоцитов крови. Они дифференцируются в вилочковой железе - тимусе (отсюда их название), поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы - лимфатических узлах (глубокая часть коркового вещества), селезенке(периартериальные влагалища лимфоидных узелков), в одиночных и множественных фолликулах различных органов, в которых под влиянием антигенов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецепторы являются продуктами генов иммунного ответа . Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов.

      В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реакциях клеточного иммунитета, обеспечивая разрушение (лизис) чужеродных клеток и собственных измененных клеток (например, опухолевых клеток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тц (киллеров) происходит под влиянием антигенов гистосовместимости на поверхности чужеродных клеток.

      Кроме того, Т-лимфоциты участвуют в регуляции гуморального иммунитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов, образование из них плазмоцитов и продукцию иммуноглобулинов (Ig). Tx имеют поверхностные рецепторы, которые связываются с белками на плазмолемме В-клеток и макрофагов, стимулируя Тх и макрофаги к пролиферации, продукции интерлейкинов (пептидных гормонов), а В-клетки - к продукции антител.

      Таким образом, главной функцией Тх является распознавание чужеродных антигенов (представляемых макрофагами), секреция интерлейкинов, стимулирующих В-лимфоциты и другие клетки для участия в иммунных реакциях.

      Снижение в крови числа Тх ведет к ослаблению защитных реакций организма (эти лица более подвержены инфекциям). Отмечено резкое снижение числа Тх у лиц, инфицированных вирусом СПИДа.

      Тс способны ингибировать активность Тх, В-лимфоцитов и плазмоцитов. Они участвуют в аллергических реакциях, реакциях гиперчувствительности. Тс подавляют дифференцировку В-лимфоцитов.

      Одной из основных функций Т-лимфоцитов является продукция цитокинов , которые оказывают стимулирующее или тормозящее влияние на клетки, участвующие в иммунном ответе (хемотаксические факторы, макрофаги ингибирующий фактор - МИФ, неспецифические цитотоксические вещества и др.).

      Натуральные киллеры . Среди лимфоцитов в крови, кроме вышеописанных Тц, выполняющих функцию киллеров, имеются так называемые натуральные киллеры (Нк, NK ), которые также участвуют в клеточном иммунитете. Они образуют первую линию защиты против чужеродных клеток, действуют немедленно, быстро разрушая клетки. Нк в собственном организме разрушают опухолевые клетки и клетки, инфицированные вирусом. Тц образуют вторую линию защиты, так как для их развития из неактивных Т-лимфоцитов требуется время, поэтому они вступают в действие позже Нк. Нк - это большие лимфоциты диаметром 12-15 мкм, имеют дольчатое ядро и азурофильные гранулы (лизосомы) в цитоплазме.

    • Развитие т- и в-лимфоцитов

    • Родоначальником всех клеток иммунной системы является кроветворная стволовая клетка (СКК). СКК локализуются в эмбриональном периоде в желточном мешке, печени, селезенке. В более поздний период эмбриогенеза они появляются в костном мозге и продолжают пролиферировать в постнатальной жизни. Из СКК в костном мозге образуется клетка-предшественник лимфопоэза (лимфоидная мультипотентная родоначальная клетка), которая генерирует два типа клеток: пре-Т-клетки (предшественники Т-клеток) и пре-В-клетки (предшественники В-клеток).

    • Дифференцировка т-лимфоцитов

    • Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы - вилочковую железу (тимус). Еще в период эмбрионального развития в вилочковой железе создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены (CD4+, CD8+). Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тц, Тх и Тс. Мигрирующие из вилочковой железы «девственные» Т-лимфоциты (виргильные Т-лимфоциты) являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов.

      Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Существует мнение, что причиной их гибели служит присоединение антигена к антигенспецифическому рецептору. В вилочковой железе нет чужеродных антигенов, поэтому данный механизм может служить для удаления Т-лимфоцитов, способных реагировать с собственными структурами организма, т.е. выполнять функцию защиты от аутоиммунных реакций. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).

      Дифференцировочные антигены Т-клеток . В процессе дифференцировки лимфоцитов на их поверхности появляются специфические мембранные молекулы гликопротеидов. Такие молекулы (антигены) можно обнаружить с помощью специфических моноклональных антител. Получены моноклональные антитела, которые реагируют лишь с одним антигеном клеточной мембраны. С помощью набора моноклональных антител можно идентифицировать субпопуляции лимфоцитов. Имеются наборы антител к дифференцировочным антигенам лимфоцитов человека. Антитела составляют относительно немного групп (или «кластеров»), каждая из которых узнает один единственный белок клеточной поверхности. Создана номенклатура дифференцировочных антигенов лейкоцитов человека, выявляемых моноклональными антителами. Эта CD-номенклатура (CD - cluster of differentiation - кластер дифференцировки) базируется на группах моноклональных антител, реагирующих с одними и теми же дифференцировочными антигенами.

      Получены многоклональные антитела к ряду дифференцировочных антигенов Т-лимфоцитов человека. При определении общей популяции Т-клеток могут быть использованы моноклональные антитела специфичностей CD (CD2, CD3, CDS, CD6, CD7).

      Известны дифференцировочные антигены Т-клеток, которые характерны либо для определенных стадий онтогенеза, либо для различающихся по функциональной активности субпопуляций. Так, CD1 - маркер ранней фазы созревания Т-клеток в вилочковой железе. В процессе дифференцировки тимоцитов на их поверхности экспрессируются одновременно маркеры CD4 и CD8. Однако в последующем маркер CD4 исчезает с части клеток и сохраняется только на субпопуляции, переставшей экспрессировать антиген CD8. Зрелые CD4+ клетки являются Тх. Антиген CD8 экспрессируется примерно на ⅓ периферических Т-клеток, которые созревают из CD4+/CD8+ Т-лимфоцитов. Субпопуляция CD8+ Т-клеток включает цитотоксические и супрессорные Т-лимфоциты. Антитела к гликопротеинам CD4 и CD8 широко используются для того, чтобы различать и разделять Т-клетки соответственно на Тх и Тц.

      Кроме дифференцировочных антигенов, известны специфические маркеры Т-лимфоцитов.

      Т-клеточные рецепторы для антигенов представляют собой антителоподобные гетеродимеры, состоящие из полипептидных α- и β-цепей. Каждая из цепей имеет длину в 280 аминокислот, большая внеклеточная часть каждой цепи свернута в два Ig-подобных домена: один вариабельный (V) и один константный (С). Антителоподобный гетеродимер кодируется генами, которые собираются из нескольких генных сегментов в процессе развития Т-клеток в вилочковой железе.

      Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

      Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе).

      Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене).

      Образующиеся Т-лимфоциты составляют пул долгоживущих , рециркулирующих лимфоцитов, а В-лимфоциты - короткоживущих клеток.

    66. Хар-ка В-лимфоцитов.

    В-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов - селезенки, лимфатических узлов, лимфоидные фолликулы многих внутренних органов. В крови их содержится 10-30% от всей популяции лимфоцитов.

    Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или MIg) для антигенов. Каждая В-клетка содержит 50000...150000 антигенспецифических молекул SIg. В популяции В-лимфоцитов находятся клетки с различными SIg: большинство (⅔) содержат IgM, меньшее число (⅓) - IgG и около 1-5 % - IgA, IgD, IgE. В плазмолемме В-лимфоцитов имеются также рецепторы для комплемента (С3) и Fc-рецепторы.

    При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

    Дифференцировка В-лимфоцитов

    Предшественники В-клеток (пре-В-клетки) развиваются в дальнейшем у птиц в фабрициевой сумке (bursa), откуда произошло название В-лимфоциты, у человека и млекопитающих - в костном мозге.

    Сумка Фабрициуса (bursa Fabricii) - центральный орган иммунопоэза у птиц, где происходит развитие В-лимфоцитов, находится в области клоаки. Для ее микроскопического строения характерно наличие многочисленных складок, покрытых эпителием, в которых расположены лимфоидные узелки, ограниченные мембраной. В узелках содержатся эпителиоциты и лимфоциты на различных стадиях дифференцировки. В период эмбриогенеза в центре фолликула формируется мозговая зона, а на периферии (снаружи от мембраны) - корковая зона, в которую, вероятно, мигрируют лимфоциты из мозговой зоны. В связи с тем что в сумке Фабрициуса у птиц образуются исключительно В-лимфоциты, она является удобным объектом для изучения строения и иммунологических характеристик этого вида лимфоцитов. Для ультрамикроскопического строения В-лимфоцитов характерно наличие в цитоплазме групп рибосом в виде розеток. Эти клетки имеют более крупные ядра и менее плотный хроматин, чем у Т-лимфоцитов, в связи с увеличением содержания эухроматина.

    В-лимфоциты отличаются от других типов клеток способностью синтезировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на клеточной мембране. Такие мембранные иммуноглобулины (MIg) функционируют как антигенспецифические рецепторы.

    Пре-В-клетки синтезируют внутриклеточный цитоплазматический IgM, но не имеют поверхностных иммуноглобулиновых рецепторов. Костномозговые виргильные В-лимфоциты имеют IgM-рецепторы на своей поверхности. Зрелые В-лимфоциты несут на своей поверхности иммуноглобулиновые рецепторы различных классов - IgM, IgG и др.

    Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти (ВП).

    В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов. Этот процесс называется переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для антигена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК.

    При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гуморальном ответе.

    Другие стимулированные антигеном клетки переключаются на выработку антител классов IgG, IgE или IgA; В-клетки памяти несут эти антитела на своей поверхности, а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называются антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах.

    При помощи моноклональных антител удалось выявить определенные дифференцировочные антигены, которые еще до появления цитоплазматических µ-цепей позволяют отнести несущий их лимфоцит к В-клеточной линии. Так, антиген CD19 является самым ранним маркером, позволяющим отнести лимфоцит к В-клеточному ряду. Он присутствует на пре-В-клетках в костном мозге, на всех периферических В-клетках.

    Антиген, выявляемый моноклональными антителами группы CD20, специфичен для В-лимфоцитов и характеризует более поздние стадии дифференцировки.

    На гистологических срезах антиген CD20 выявляется на В-клетках герминативных центров лимфоидных узелков, в корковом веществе лимфатических узлов. В-лимфоциты несут также ряд других (например, CD24, CD37) маркеров.

    67. Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ - пищеварительных ферментов, компонентов системы комплемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и др., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специфического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характеризующихся рядом отклонений от нормы (опухолевые клетки).

    Для оптимального развития иммунных реакций при действии большинства антигенов необходимо участие макрофагов как в первой индуктивной фазе иммунитета, когда они стимулируют лимфоциты, так и в его конечной фазе (продуктивной), когда они участвуют в выработке антител и разрушении антигена. Антигены, фагоцитированные макрофагами, вызывают более сильный иммунный ответ по сравнению с теми, которые не фагоцитированы ими. Блокада макрофагов введением в организм животных взвеси инертных частиц (например, туши) значительно ослабляет иммунный ответ. Макрофаги способны фагоцитировать как растворимые (например, белки), так и корпускулярные антигены. Корпускулярные антигены вызывают более сильный иммунный ответ.

    Некоторые виды антигенов, например пневмококки, содержащие на поверхности углеводный компонент, могут быть фагоцитированы лишь после предварительнойопсонизации . Фагоцитоз значительно облегчается, если антигенные детерминанты чужеродных клеток опсонизированы, т.е. соединены с антителом или комплексом антитела и комплемента. Процесс опсонизации обеспечивается присутствием на мембране макрофага рецепторов, которые связывают часть молекулы антитела (Fc-фрагмент) или часть комплемента (С3). С мембраной макрофага у человека непосредственно могут связываться только антитела класса IgG, когда они находятся в комбинации с соответствующим антигеном. IgM могут связываться с мембраной макрофага в присутствии комплемента. Макрофаги способны «распознавать» растворимые антигены, например гемоглобин.

    В механизме распознавания антигена выделяют два этапа, тесно связанных друг с другом. Первый этап заключается в фагоцитозе и переваривании антигена. Во втором этапе в фаголизосомах макрофага накапливаются полипептиды, растворимые антигены (сывороточные альбумины) и корпускулярные бактериальные антигены. В одних и тех же фаголизосомах может быть обнаружено несколько введенных антигенов. Изучение иммуногенности различных субклеточных фракций выявило, что наиболее активное антителообразование вызывает введение в организм лизосом. Антиген обнаруживается также в мембранах клеток. Выделяемая макрофагами большая часть переработанного материала антигенов оказывает стимулирующее влияние на пролиферацию и дифференцировку клонов Т- и В-лимфоцитов. Небольшое количество антигенного материала может длительное время сохраняться в макрофагах в виде химических соединений, состоящих не менее чем из 5 пептидов (возможно, в связи с РНК).

    В В-зонах лимфатических узлов и селезенки имеются специализированные макрофаги (дендритные клетки), на поверхности многочисленных отростков которых сохраняются многие антигены, попадающие в организм и передающиеся соответствующим клонам В-лимфоцитов. В Т-зонах лимфатических фолликулов расположены интердигитирующие клетки, влияющие на дифференцировку клонов Т-лимфоцитов.

    Таким образом, макрофаги принимают непосредственное активное участие в кооперативном взаимодействии клеток (Т- и В-лимфоцитов) в иммунных реакциях организма.

    Лимфоциты - это особые клетки в организме живого существа. Именно они отвечают за его защиту от внешних раздражителей, инфекций, вирусов. Но само понятие "лимфоциты" - довольно обширное и общее. Внутри себя эти клетки будут разделяться еще на несколько групп. В статье мы подробно познакомимся с одной из них - Т-лимфоцитами. Функции, разновидности клеток, нормальные их показатели, отклонения от нормы в крови человека - все эти темы будут рассмотрены далее.

    Происхождение клеток

    Где образуются клетки Т-лимфоциты? Хоть основное место их "жительства" - кровеносное русло (лимфоциты также обитают и в иных тканях), образуются они далеко не там. Место их "рождения" - костный красный мозг. Он известен как кроветворная ткань организма. То есть, помимо лимфоцитов, тут также будут образовываться эритроциты, белые кровяные клетки (нейтрофилы, лейкоциты, моноциты).

    Строение лимфоцитов

    "Анатомические" особенности следующие:

    • Крупное ядро круглой или овальной формы.
    • В цитоплазме (содержимом самой клетки) будет отсутствовать зернистость.
    • Если цитоплазмы в клетке мало, она называется узкоплазменной, если много - широкоплазменной.

    По своему строению лимфоциты, населяющие кровь, будут немного отличаться от своих собратьев, поселившихся в иных тканях. И это нормально. Более того, клетки, "живущие" в одном месте, тоже будут иметь между собой некоторые внешние различия.

    Виды лимфоцитов

    Кроме типов Т-лимфоцитов, существуют различные группировки этих клеток вообще. Давайте рассмотрим их.

    Первая классификация - по размеру:

    • Малые.
    • Большие.

    Вторая классификация - по выполняемым функциям:

    • В-лимфоциты. Могут распознавать инородные частицы и вырабатывать против них убийственные антитела. Иными словами, ответственны за гуморальный иммунитет.
    • Т-лимфоциты. Основная функция - ответственность за клеточный иммунитет. Вступают в контакт с чужеродными телами и уничтожают их.
    • NK-клетки. Натуральные киллеры, что могут распознать раковые, дефектные клетки и уничтожить их. Отвечают за сохранение клеточного нормального состава всего организма.

    Разновидности Т-лимфоцитов

    Данная группа лимфоцитов внутри себя будет разделяться еще на несколько типов:

    • Т-киллеры.
    • Т-хелперы.
    • Т-супрессоры.
    • Т-клетки памяти.
    • Ампликаторы-лимфоциты.

    Т-киллеры: что за тип

    Это самые известные представители группы Т-лимфоцитов. Их главная задача - разрушение неполноценных, дефектных клеток организма. Иное название группы - цитотоксические Т-лимфоциты. Иными словами, отвечающие за устранение клеток ("цито"), которые обладают токсическим воздействием на весь организм.

    Главная функция Т-киллеров - иммунный надзор. Клетки агрессивно воздействуют на чужеродный белок. Именно эта полезная функция бывает вредной при пересадке человеку органов. Т-киллеры стремятся поскорее уничтожить "чужака", не понимая, что именно он способен спасти организм. Поэтому пациент какое-то время после трансплантации органа принимает медикаменты, что угнетают иммунную систему. Препараты снижают процент Т-киллеров в крови, нарушают их взаимодействие. Благодаря этому пересаженный орган приживается, а пациенту не грозят осложнения и летальный исход.

    Механизм воздействия данного вида лимфоцитов на чужеродный элемент очень интересен. Фагоциты, например, агрессивно "нападают" на "чужака" для его последующего пожирания и переваривания. Т-киллеры на их фоне - "благородные убийцы". Они прикасаются к объекту своими отростками, затем разрывают контакт и удаляются. Только после такого "смертельного поцелуя" инородный микроорганизм погибает. Почему же?

    Во время прикосновения Т-киллеры оставляют на поверхности организма частичку своей мембраны. Она обладает свойствами, которые позволяют ей разъедать поверхность объекта нападения - вплоть до образования сквозных дыр. Через эти отверстия из микроорганизма уходят ионы калия, а их место занимает вода и ионы натрия. Клеточный барьер нарушается, между внутренней и внешней средой уже нет границы. Микроорганизм раздувает поступившая в него вода, белки цитоплазмы и органеллы разрушаются. Остатки "чужака" после этого пожирают фагоциты.

    Хелперы

    Главная функция этих клеток Т-лимфоцитов - помощь. Отсюда и их название, произошедшее от английского слова, переводящегося так же.

    Но кому или чему приходят на выручку данные Т-лимфоциты? Они призваны индуцировать и стимулировать иммунный ответ. Именно под влиянием Т-хелперов будут активировать свою работу Т-киллеры, с которыми мы уже успели познакомиться.

    Хелперы станут передавать данные о присутствии в организме чужеродного белка. А это ценная информация для В-лимфоцитов - они, в свою очередь, начинают выделять против него определенные защитные антитела.

    Также Т-хелперы стимулируют работу еще одной разновидности "охранных" клеток - фагоцитов. В частности, они плотно взаимодействуют с моноцитами.

    Супрессоры

    Этот термин сам по себе означает "подавление". Отсюда нам становится понятной функция Т-супрессоров. Хелперы в нашем организме будут активировать защитную, иммунную функцию, а данные Т-лимфоциты, напротив, будут ее подавлять.

    Не надо думать, что это оказывает какое-то негативное влияние на систему. Т-супрессоры отвечают за регуляцию иммунного ответа. Ведь где-то нужно реагировать на определенный раздражитель сдержанно и умеренно, а где-то - аккумулировать против него все имеющиеся силы.

    Амплификаторы

    Перейдем теперь к функциям Т-лимфоцитов данной группы. После того как в организм проникает тот или иной агрессор, в крови и тканях живого существа сразу же повышается содержание лимфоцитов. К примеру, буквально за несколько часов их объем может увеличиться в два раза!

    Какова же причина такого быстрого роста армии клеток-защитников? Может быть, дело в том, что в организме где-то до поры до времени они "припрятаны" про запас?

    Это действительно так. В тимусе и селезенке обитает какая-то масса зрелых полноценных лимфоцитов. Только до какого-то момента эти клетки "не определяются" со своим предназначением, функцией. Они и будут называться амплификаторами. При надобности данные клетки превращаются в ту или иную разновидность Т-лимфоцитов.

    Клетки памяти

    Опыт, как известно, - главное оружие. Поэтому, справившись с какой-либо угрозой, наши Т-лимфоциты ее запоминают. В свою очередь, организм вырабатывает специальные клетки, которые будут хранить эту информацию до новой "битвы" с данным чужеродным элементом. Этими элементами и будут Т-клетки памяти.

    Вторичный агрессор (того вида, которому иммунная система уже противостояла) проникает в организм. Т-клетка памяти узнает его. Затем данная частица начинает активно размножаться, чтобы дать чужеродному организму вторичный достойный иммунный ответ.

    Нормальные показатели Т-лимфоцитов в крови человека

    В данной категории невозможно представить какую-то определенную цифру - нормальные значения будут варьироваться в зависимости от возраста человека. Связано это с особенностями развития его иммунной системы. С возрастом будет уменьшаться объем вилочковой железы. Поэтому, если в детстве в крови преобладают лимфоциты, то с взрослением они передают лидирующую позицию уже нейтрофилам.

    Уровень Т-лимфоцитов крови помогает определить общий клинический анализ крови. Нормальные показатели тут такие:

    • (50,4±3,14)*0,6-2,5 тыс.
    • 50-70%.
    • Соотношение "хелперы/супрессоры" - 1,5-2.

    О чем говорят повышенные и пониженные показатели

    Повышенное содержание Т-лимфоцитов в крови может свидетельствовать о следующем:

    • Хронический или острый лимфолейкоз.
    • Гиперактивный иммунитет.
    • Синдром Сезари.

    А, напротив, пониженное содержание Т-элементов говорит о следующих патологиях и заболеваниях:

    • Хронические инфекции - гнойные процессы, ВИЧ, туберкулез.
    • Сниженная выработка лимфоцитов.
    • Генетические заболевания, вызывающие иммунодефицит.
    • Опухоли лимфоидной ткани.
    • Почечная и сердечная недостаточность, наблюдаемая на последней стадии.
    • Т-клеточная лимфома.
    • Прием пациентом медикаментов, которые разрушают лимфоциты.
    • Следствие лучевой терапии.

    Мы познакомились с Т-лимфоцитами - клетками-защитниками нашего организма. Каждый из видов выполняет при этом свою особенную функцию.

    Лимфоциты, как и другие клетки иммунной системы, являются производными полипотентной стволовой клетки костного мозга. В результате пролиферации и дифференцировки стволовых клеток формируются две основные группы лимфоцитов, именуемые В- и Т- лимфоцитами, которые морфологически не отличимы друг от друга (схема 13.1).

    Морфологически лимфоцит – клетка шаровидной формы с большим ядром и узким слоем базофильной цитоплазмы. В процессе дифференцировки последовательно формируются большие, средние и малые лимфоциты. В лимфе и периферической крови большинство составляют наиболее зрелые малые лимфоциты, которые обладают амебовидной подвижностью. Они постоянно перемещаются с током лимфы или крови, накапливаясь в лимфоидных органах и тканях, где осуществляются иммунологические реакции.

    Две основные популяции лимфоцитов Т- и В-клетки при световой микроскопии не различаются, но четко дифференцируются по поверхностным структурам и функциональным свойствам. Их сравнительные характеристики представлены в табл. 13.2.

    Основные функциональные отличия Т - и В -лимфоцитов состоят в том, что В -лимфоциты осуществляют гуморальный иммунный ответ, а Т - лимфоциты – клеточный, а также участвуют в регуляции обеих форм иммунного ответа; при этом Т -система по отношению к В -системе является регулирующей.

    Т -лимфоциты получили обозначение потому, что созревают и дифференцируются в тимусе. Они составляют около 80% всех лимфоцитов крови и лимфоузлов, содержатся во всех тканях организма.

    Они осуществляют две основные функции – регуляторную и эффекторную.

    Регуляторные клетки обеспечивают развитие иммунного ответа другими клетками, регулируют его дальнейшее течение.

    Эффекторные Т -лимфоциты осуществляют эффект иммунологической реакции чаще всего в форме цитолиза клеточных структур, к антигенам которых возникла иммунологическая реакция.

    Все Т-лимфоциты обладают поверхностными молекулами CD2, определяющими их адгезивные свойства и молекулами CD3, являющимися рецепторами для антигенов. В тимусе Т- лимфоциты дифференцируются на две субпопуляции, содержащие антигены CD4 либо CD8.

    Лимфоциты CD4 обладают свойствами клеток – помощников – хелперов (Тх), лимфоциты CD8 – цитотоксическими свойствами, а также супрессорным эффектом, заключающимся в их способности подавлять активность других клеток иммунной системы.

    В ответ на антигенный стимул Т-лимфоциты трансформируются в иммунобласты – крупные делящиеся клетки с пиронинофильной цитоплазмой, содержащей многочисленные рибосомы и полирибосомы. Иммунобласты Т-клеток синтезируют и экскретируют в окружающую среду растворимые факторы (лимфокины), являющиеся медиаторами иммунитета.

    Т-иммунобласты неоднородны по своему функциональному участию в регуляции иммунного ответа. Они дифференцируются на следующие популяции Т -лимфоцитов:

    1. Т -киллеры (tokill – убивать) или син. Т -эффекторы – они обладают специфической цитотоксической активностью в отношении клеток – мишений без участия антител и комплемента. Клетка – киллер оказывает действие в результате прямого контакта с антигенными детерминантами клетки – мишени. Т- эффекторы ответственны за клеточный иммунитет в различных его проявлениях: разрушают опухолевые клетки, трансплантированные клетки, мутировавшие клетки собственного организма, участвуют в гиперчувствительности замедленного типа. Это цитоцидные клетки, разрушающие клетки-мишени при непосредственном контакте за счет выделяемых ферментов-токсинов или в результате активации в клетках-мишенях лизосомальных ферментов.

    2. Т -хелперы (tohelp –помогать) относятся к регулирующим клеткам. Получив от макрофагов информацию об антигене, Т-хелперы с помощью иммуноцитокинов передают сигнал, усиливающий пролифирацию Т- и В -лимфоцитов нужных клонов, превращая их в активированные Т-эффекторы или, взаимодействуя с В 2 -лимфоцитами, стимулируют их трансформацию в плазмоциты, которые синтезируют антитела.

    3. Т -супрессоры (suppression – подавление) тоже относятся к регуляторам иммунного ответа. Они являются антагонистами Т-хелперов, т. е. блокируют Т- хелперы, тормозят пролиферацию иммунокомпетентных В- клеток, способствуют развитию толерантности. Действие Т- супрессоров позволяет ограничить силу иммунного ответа биологической потребностью, достаточной для восстановления гомеостаза, предотвратить избыточную продукцию иммуноглобулинов. Гиперфункция Т- супрессоров сопровождается угнетение иммунного ответа, вплоть до полного его подавления. Недостаточность Т- супрессоров ведет к развитию аутоиммунных и других вредных для организма реакций.

    4. Т -усилители, или Т - амплифайеры (amplifier – усилитель) выполняют функцию помощников в иммунном ответе клеточного типа, а именно: усиливают действие тех или иных субпопуляций Т-лимфоцитов.

    5. Т -дифференцирующие клетки (difference – различие) изменяют дифференцировку стволовых клеток гемопоэза в миелоидном или лимфоидном направлениях.

    6. Т -лимфоциты иммунологической памяти (immunememori) – стимулированные антигеном Т - лимфоциты, способные сохранять и передавать другим клеткам информацию об этом антигене. При повторном попадании в организм антигена клетки памяти обеспечивают его иммунное распознавание и ответ по вторичному типу.

    К цитотоксическим лимфоцитам (Т- киллеры) по происхождению и функциям близки естественные киллеры (ЕК), которые имеют общих предков – предшественников с Т-лимфоцитами. Однако ЕК не попадают в тимус и не подвергаются дифференцировке и селекции. Эти лимфоциты не имеют рецепторов для антигенов и поэтому не участвуют в специфических реакциях приобретенного иммунитета. ЕК относятся к системе естественного иммунитета и разрушают в организме любые клетки, зараженные вирусами, а также опухолевые клетки. В отличие от цитотоксических Т- лимфоцитов, формирующихся и проявляющих свое действие в организме только после антигенной стимуляции, ЕК всегда готовы к контакту с мишенями и цитотоксическому действию. Механизмы их цитотоксического действия сходны с действием Т- киллеров (т. е. за счет образования активных субстратов). Маркерами ЕК человека служат поверхностные антигены СD 56, СD 16 (и СD 2). Сами ЕК продуцируют цитокины, активирующие другие клетки иммунной системы, повышая общий уровень защитных реакций.

    В -лимфоциты составляют вторую основную популяцию лимфоцитов. Эти клетки составляют 10 – 15 % лимфоцитов крови, 20 – 25 % клеток лимфоузлов.

    В-лимфоциты выполняют в организме две роли: обеспечивают продукцию антител и участвуют в представлении антигенов В-лимфоцитам.

    В-лимфоциты обладают поверхностными рецепторами для антигенов, представляющих собой молекулы иммуноглобулинов, чаще всего классов D и М, фиксированных на их наружной мембране. На поверхности одного

    В-лимфоцита находится 200-500 тыс. молекул одинаковой специфичности. Отделившиеся от В-лимфоцита иммуноглобулиновые рецепторы циркулируют в организме как свободные антитела.

    В-лимфоцит происходит от стволовой кроветворной клетки, проходит созревание в костном мозге, где на его поверхности формируются иммуноглобулиновые рецепторы для антигенов. На каждом лимфоците формируются рецепторы только для одного антигена. Созревающий лимфоцит покидает костный мозг и становится антиген-реактивной клеткой, т. е. клеткой, способной к взаимодействию с одним из многочисленных антигенов, существующих в природе. В отличие от Т-лимфоцитов, которые могут взаимодействовать с антигеном только после его представления антиген-представляющей клеткой, В-лимфоциты вступают в контакт с антигеном напрямую, без посредников. Контакт с антигеном может служить стимулом для пролиферации и дифференцировки В-лимфоцитов.

    В-лимфоциты последовательно превращаются в иммуноциты, плазмобласты и плазмоциты.

    Плазмоциты – основные клетки, которые синтезируют и экскретируют антитела. Плазматическая клетка относится к короткоживущим клеткам. Плазмоциты не имеют на наружной мембране рецепторов для антигена. Они – конечный продукт дифференцировки В-лимфоцитов. Интенсивность синтеза иммуноглобулинов одной плазматической клеткой достигает 1 млн молекул в час. После завершения фазы активной продукции антител плазмоциты прекращают свое существование.

    В популяции В -лимфоцитов различают несколько субпопуляций:

    1. В 1 -лимфоциты – предшественники плазмоцитов, синтезирующих антитела без взаимодействия с Т- хелперами. Есть тимуснезависимые антигены (бактериальные полисахариды, полимеризованный флагелин, леван и др.), которые способны без Т-лимфоцитов реагировать, т. е. фиксироваться на рецепторах В-клеток. Эти антигены стимулируют синтез только Ig М.

    2. В 2 –лимфоциты, превращаются после антигенной стимуляции в плазмоциты с помощью Т-хелперов, ответственны за гуморальный ответ на тимусзависимые антигены, сопровождающийся синтезом иммуноглобулинов всех классов.

    3. В 3 -лимфоциты (В -киллеры) оказывают цитотоксическое действие на клетки-мишени, покрытые антителами, без участия комплемента. Допускается, что В-киллеры – производные «нулевых» лимфоцитов – лимфоцитов без отличительных признаков Т- и В- клеток. Тот факт, что они встречаются среди лимфоцитов костного мозга в 50 % случаев, а среди лимфоцитов крови в 5% случаев, позволяет предположить, что это незрелые формы лимфоцитов, хотя и обладающие цитотоксической активностью.

    4. В -супрессоры тормозят пролиферацию и трансформацию Т-клеток, стимулированных антигеном. Супрессорное действие В-клеток, как и Т-клеток, осуществляется при непосредственном контакте с иммунокомпетентными клетками и опосредованно через медиаторы.

    5. В -лимфоциты памяти формируются в ходе иммунного ответа на антиген, составляют около 1 % всех В-лимфоцитов, отличаются долголетием и способностью быстро отвечать на повторное поступление антигена. В- лимфоциты памяти не имеют морфологических отличий от других В -лимфоцитов, но обладают активным геном (bcl-2). В-клетки памяти рециркулируют между кровью, лимфой и лимфоидными органами, но более всего накапливаются в периферических лимфоидных органах. Они сохраняют информацию об антигене, способны передавать её другим клеткам, обеспечивают при повторном попадании антигена синтез Ig по вторичному признаку.

    Макрофаги – это антигенпредставляющие клетки (АПК), т.к. они обладают антигенами МНС II класса и способностью сорбировать на своей поверхности чужеродный антиген. Макрофаги, дендритные клетки и

    В-лимфоциты называют профессиональными АПК, т. к. они более мобильны, активны и выполняют основной объем функций представления антигенов. АПК имеет на наружной мембране до 2 . 10 5 молекул МНС II класса. Для активации одного Т-лимфоцита достаточно 200 – 300 таких молекул, находящихся в комплексе с антигеном.

    Макрофаги развиваются из миелопоэтической стволовой клетки костного мозга, проходя этапы: промоноцит – циркулирующий моноцит – тканевой макрофаг.

    Моноциты, составляющие около 5 % лейкоцитов крови, находятся в циркуляции около 1 суток, а затем поступают в ткани, формируя популяцию тканевых макрофагов, количество которых в 25 раз больше, чем моноцитов. К ним относятся купферовские клетки печени, микроглия центральной нервной системы, остеокласты костной ткани, макрофаги легочных альвеол, кожи и других тканей. Много макрофагов во всех органах иммунной системы.

    Тканевые макрофаги – клетки с округлым или почковидным ядром имеют диаметр 40 – 50 мкм. Цитоплазма содержит лизосомы с набором гидролитических ферментов, обеспечивающих переваривание любых органических веществ и выделение бактерицидного аниона кислорода.

    Макрофаги функционируют как фагоциты.

    Участие макрофага в иммунном ответе состоит в том, что эта клетка фагоцитирует антиген-содержащие частицы, дезинтегрирует их, превращая белки в антигенные пептидные фрагменты. Последние в комплексе с собственными антигенами МНС II класса макрофаг передает Т-лимфоциту при прямом контакте с ним.

    При этом макрофаг продуцирует лимфокин ИЛ – 1 , который вызывает пролиферацию лимфоцитов, вступивших в контакт с антигеном, что обеспечивает формирование клона этих клеток, осуществляющих развитие иммунологической реакции на антиген.

    Дендритные клетки составляют вторую группу АПК. Они близки к макрофагам, но не обладают фагоцитирующими свойствами. Это способствует сохранности поглощенных антигенов. Дендритные клетки содержатся в крови, лимфе и во всех других тканях. Дендритные клетки эпителиальных тканей называют клетками Лангерганса, в лимфоузлах и селезенке они составляют около 1 % всех клеток. Эти отростчатые мононуклеарные клетки в разных тканях имеют неодинаковую форму и даже названия, однако все они обладают молекулами МНС II класса и способностью фиксировать антигены с формированием комплекса антиген-продукт МНС, представляемого Т-лимфоцитам.

    Дендритные клетки более активны, чем макрофаги и В- клетки в индукции первичного иммунного ответа: в отличие от других АПК дендритные клетки могут представлять антиген покоящимся Т – лимфоцитам. Захват антигена дендритными клетками чаще всего происходит вне лимфоидных органов. После этого они мигрируют в лимфоидные образования, где происходит их контакт с Т-лимфоцитами и развитие дальнейших событий иммунного ответа. МНС II класса – молекула, представляющая антиген CD4 Т-лимфоциту хелперу, а МНС I класса – молекула, представляющая антиген CD8 Т-лимфоциту киллеру. Поэтому дендритные клетки являются также инициаторами цитотоксических реакций.

    В -лимфоциты как АПК в отличие от других АПК вступают в контакт с антигеном через свои специфические рецепторы. Следовательно, в представлении антигена участвуют не все В - лимфоциты, а только те, которые обладают рецепторами к данному антигену. Вследствие этого для индукции иммунного ответа требуется в 10 тыс. раз меньше антигена, чем при его представлении другими АПК. Процесс присоединения антигена к В -лимфоциту длится несколько минут, после чего антиген подвергается эндоцитозу. Далее В -лимфоцит вступает в прямой контакт с Т-клеткой и служит сигналом для ее активации.

    Клетки антиген - неспецифической резистентности

    В осуществлении иммунной защиты организма принимают участие клетки, которые не распознают антигены как лимфоциты и не представляют их лимфоцитам, как АПК.

    Это клетки группы гранулоцитов, которые обладают способностью отличать клетки собственного организма от чужеродных, подвергать последние фагоцитозу и индуцировать воспалительные реакции.

    Такие же свойства присущи моноцитам, макрофагам и их производным – клеткам, участвующим как в реакциях естественного иммунитета, так и в индукции специфического иммунного ответа в качестве АПК.

    Нейтрофильные, базофильные, эозинофильные лейкоциты, а также макрофаги продуцитруют цитокины, регулирующие активность лимфоцитов и сами находятся под их контролем. Эозинофилы обеспечивают наиболее эффективный фагоцитоз гельминтов. Базофильные лейкоциты и тучные клетки содержат в цитоплазме до 100 – 500 гранул, содержащих гистамин, гепарин, серотонин и другие медиаторы, которые выходя из клетки оказывают повреждающее действие как на микроорганизмы, так и на собственные окружающие клетки, способствуя развитию анафилактической реакции.

    Кровяные пластинки, или тромбоциты, относятся к системе свертывания крови и играют существенную роль в воспалительных реакциях, регулируют циркуляцию клеток, фиксацию иммунных комплексов в тканях. Тромбоциты содержат медиаторы аллергических реакций, прямо способствующие развитию аллергического воспаления.

    Несмотря на большое разнообразие, система клеток и органов иммунной системы функционирует как единое целое на основе единства и функционального программирования всех ее элементов, межклеточной кооперации, механизмов обратной связи, а также антигеннеспецифической регуляции всей системы цитокинами, гормональными и метаболическими механизмами.

    Для полного иммунного ответа на большинсво антигенов необходимо взаимодействие макрофагов с Т - и В - лимфоцитами.

    Основные иммунологические феномены включают:

    1) гуморальные факторы (антителообразование); 2)клеточные факторы.