График функции log x. «Логарифмическая функция, её свойства и график

Cтраница 1


Логарифмическая функция (80) осуществляет обратное отображение всей плоскости w с разрезом на полосу - я / /: я, бес-конечнолистную риманову поверхность на полную z - плоскость.  


Логарифмическая функция: у logaх, где основание логарифмов а-положительное число, не равное единице.  

Логарифмическая функция играет специальную роль в разработке и анализе алгоритмов, поэтому ее стоит рассмотреть подробнее. Поскольку мы часто имеем дело с аналитическими результатами, в которых опущен постоянный множитель, мы используем запись log TV, опуская основание. Изменение основания логарифма меняет значение логарифма лишь на постоянный множитель, однако, в определенном контексте возникают специальные значения основания логарифма.  

Логарифмическая функция обратна показательной. График ее (рис. 247) получается из графика показательной функции (при том же основании) перегибом чертежа по биссектрисе первого координатного угла. Так же получается график всякой обратной функции.  

Логарифмическая функция вводится Затем как обратная показательной. Свойства обеих функций выводятся без труда из этих определений. Именно это определение получило одобрение Гаусса, который вместе с тем выразил несогласие с оценкой, данной ему в рецензии Геттинген-ских ученых известий. При этом Гаусс подошел к вопросу с более широкой точки зрения, чем да Кунья. Последний ограничился рассмотрением показательной и логарифмической функций в действительной области, между тем как Гаусс распространил их определение на комплексные переменные.  

Логарифмическая функция y logax монотонна во всей области своего определения.  

Логарифмическая функция непрерывна и дифференцируема во всей области определения.  

Логарифмическая функция монотонно возрастает, если а I, При 0 а 1 логарифмическая функция с основанием а монотонно убывает.  

Логарифмическая функция определена только для положительных значений х и взаимно однозначно отображает интервал (0; 4 - ос.  

Логарифмическая функция у loga х является обратной функцией по отношению к показательной функции уах.  

Логарифмическая функция: y ogax, где основание логарифмов а - положительное число, не равное единице.  

Логарифмические функции хорошо сочетаются с физическими представлениями о характере ползучести полиэтилена в условиях, когда скорость деформации невелика. В этом отношении они совпадают с уравнением Андрааде, поэтому их иногда применяют для аппроксимации экспериментальных данных.  

Логарифмическая функция, или натуральный логарифм, и In z, определяется решением трансцендентного уравнения г еи относительно и. В области действительных значений х и у при условии х 0 это уравнение допускает единственное решение.  

Урок алгебры в 10 классе

Тема: «Логарифмическая функция, её свойства и график»

Цели:

    Образовательная : Ввести понятие логарифмической функции с применением прошлого опыта, дать определение. Изучить основные свойства логарифмической функции. Сформировать умение выполнять построение графика логарифмической функции.

    Развивающая: Выработать умение выделять главное, сравнивать, обобщать. Формировать графическую культуру учащихся.

    Воспитательная: Показать взаимосвязь математики с окружающей действительностью. Формировать навыки общения, диалога, умение работать в коллективе.

Тип урока: Комбинированный

Методы обучения: Частично-поисковый, диалоговый.

Ход урока .

1.Актуализация прошлого опыта:

Учащимся предлагаются устные упражнения с использованием определения логарифма, его свойств, формул перехода к новому основанию, решения простейших логарифмических и показательных уравнений, примеров на нахождение области допустимых значений под логарифмических выражений

Устные упражнения Устная работа.

1) Вычислить, пользуясь определением логарифма: log 2 8; log 4 16;.

2) Вычислить, используя основное логарифмическое тождество:

3) Решите уравнение, используя определение:

4) Выясните, при каких значениях x имеет смысл выражение:

5) Найдите значение выражения, используя свойства логарифмов:

2. Изучение темы. Учащимся предлагается решить показательные уравнения: 2 х =у; () х =у. с помощью выражения переменной х через переменную у. В результате этой работы получаются формулы, которые задают функции, незнакомые учащимся. ,.Вопрос : «Как бы вы назвали эту функции?» учащиеся говорят, что она логарифмическая, так как переменная стоит под знаком логарифма: .

Вопрос . Дайте определение функции. Определение: Функцию, заданную формулой у=log a x называют логарифмической с основанием а (а>0, а 1)

III. Исследование функции y=log a x

Совсем недавно мы ввели понятие логарифма положительного числа по положительному и отличному от 1 основанию а. Для любого положительного числа можно найти логарифм по заданному основанию. Но тогда следует подумать и о функции вида у=log a x, и о ее графике и свойствах. Функцию, заданную формулой у=log a x называют логарифмической с основанием а (а>0, а 1)

Основные свойства логарифмической функции:

1. Областью определения логарифмической функции будет являться все множество положительных действительных чисел. Для краткости его еще обозначают R+. Очевидное свойство, так как каждое положительное число имеет логарифм по основанию а. D (f )=R+

2. Областью значения логарифмической функции будет являться все множество действительных чисел. E (f )= (-∞; +∞)

3 . График логарифмической функции всегда проходит через точку (1;0).

4 . Л логарифмическая функция возраста ет при а >1, и убывает при 0<х<1.

5 . Функция не является четной или нечетной. Логарифмическая функция – функция общего вид а .

6 . Функция не имеет точек максимума и минимума , в области определения непрерывна .

На следующем рисунке представлен график убывающей логарифмической функции - (0

Если построить в одной оси координат показательную и логарифмическую функции с одинаковыми основаниями, то графики этих функций будут симметричны относительно прямой y = x. Данное утверждение показано на следующем рисунке.

Изложенное выше утверждение будет справедливо, как для возрастающих, так и для убывающих логарифмических и показательных функций.

Рассмотрим пример: найти область определения логарифмической функции f(x) = log 8 (4 - 5x).

Исходя из свойств логарифмической функции, областью определения является все множество положительных действительных чисел R+. Тогда заданная функция будет определена для таких х, при которых 4 - 5x>0. Решаем это неравенство и получаем x<0.8. Таким образом, получается, что областью определения функции f(x) = log 8 (4 - 5*x) будет являться промежуток (-∞;0.8)

Графики логарифмической функции в программе GeoGebra


Графики логарифмической функции
1) натуральный логарифм y = ln (x)
2) десятичный логарифм y = lg (x)
3) логарифм по основанию 2 y = ld (x)

V. Закрепление темы

Применяя полученные свойства логарифмической функции решим следующие задания:

1. Найти область определения функции: у=log 8 (4-5x);у= log 0,5 (2х+8);.

3. Схематично построить графики функций:у=log 2 (х+2) -3 у= log 2 (х) +2

Тип урока: изучение нового материала.

Цели урока:

  • сформировать представление ологарифмической функции, ее основных свойствах;
  • сформировать умение выполнять построение графика логарифмической функции;
  • содействовать развитию умений выявлять свойства логарифмической функции по графику;
  • развитие навыков работы с текстом, умения анализировать информацию, способность ее систематизировать, оценивать, использовать;
  • развитие умений работать в парах, микрогруппах (навыки общения, диалога, принятие совместного решения)

Используемая технология: технология развития критического мышления, технология работы в сотрудничестве

Используемые приемы: верные, неверные утверждения, ИНСЕРТ, кластер, синквейн

На уроке применяются элементы технологии развития критического мышления для развития способности выявлять пробелы в своих знаниях и умениях при решении новой задачи, оценивать необходимость той или иной информации для своей деятельности, осуществлять информационный поиск, самостоятельно осваивать знания, необходимые для решения познавательных и коммуникативных задач. Этот тип мышления помогает критически относиться к любым утверждениям, ничего не принимать на веру без доказательств, быть открытым новым знаниям, идеям, способам.

Восприятие информации происходит в три этапа, что соответствует таким стадиям урока:

  • подготовительный – стадия вызова;
  • восприятие нового – смысловая стадия (или стадия реализации смысла);
  • присвоение информации – стадия рефлексии.

Учащиеся работают в группах, сопоставляют свои предположения с информацией, полученной в ходе работы с учебником, построения графиков функций и описаний их свойств, вносят в предложенную таблицу «Верите ли вы, что…» изменения, делятся мыслями с классом, обсуждают ответы на каждый вопрос. На стадии вызова выясняют в каких случаях, при выполнении каких заданий можно применить свойства логарифмической функции. На стадии осмысления содержания идет работа на распознавание графиков логарифмических функций, нахождение области определения, определение монотонности функций.

Чтобы расширить знания по изучаемому вопросу, обучающимся предлагается текст «Применение логарифмической функции в природе и технике». Используем для сохранения интереса к теме. Ученики работают в группах, составляя кластеры «Применение логарифмической функции». Затем происходит защита кластеров, обсуждение их.

В качестве творческой формы рефлексии используется синквейн, развивающий способность резюмировать информацию, излагать сложные идеи, чувства и представления в нескольких словах.

Оборудование: презентация PowerPoint, интерактивная доска, раздаточный материал (карточки, текстовый материал, таблицы), листы бумаги в клетку.

Ход урока

Стадия вызова:

Вступление учителя . Мы работаем над освоением темы «Логарифмы». Что на данный момент мы знаем и умеем?

Ответы учащихся.

Знаем : определение, свойства логарифма, основное логарифмическое тождество, формулы перехода к новому основанию, области применения логарифмов.

Умеем : вычислять логарифмы, решать простейшие логарифмические уравнения, производить преобразования логарифмов.

С каким понятием тесно связано понятие логарифма? (с понятием степени, т.к. логарифм – показатель степени)

Задание учащимся . Используя понятие логарифма, заполните две любые таблицы при а > 1 и при 0 < a < 1 (Приложение №1)

Проверка работы групп.

Что представляют собой представленные выражения? (показательные уравнения, показательные функции)

Задание учащимся . Решите показательные уравнения с помощью выражения переменной х через переменную у .

В результате этой работы получаются формулы:

В полученных выражениях поменяем местами х и у . Что получилось у нас?

Как бы вы назвали эти функции? (логарифмические, так как переменная стоит под знаком логарифма). Как записать эту функцию в общем виде?

Тема нашего урока «Логарифмическая функция, её свойства и график».

Логарифмическая функция – это функция вида , где а – заданное число, а>0 , а≠1 .

Наша задача – научиться строить и исследовать графики логарифмических функций, применять их свойства.

На столах у вас лежат карточки с вопросами. Все они начинаются со слов «Верите ли вы, что…»

Ответ на вопрос может быть только «да» или «нет». Если «да», то справа от вопроса в первом столбце поставьте знак «+», если «нет», то знак «-». Если сомневаетесь - поставьте знак «?».

Работайте в парах. Время работы 3 минуты. (Приложение №2)


Заслушав ответы учащихся, заполняется первый столбец сводной таблицы на доске.

Стадия осмысления содержания (10 мин).

Подводя итоги работы с вопросами таблицы, учитель готовит учеников к мысли, что, отвечая на вопросы, мы пока не знаем, правы мы или нет.

Задание группам . Ответы на вопросы можно найти, изучив текст §4 стр.240-242. Но предлагаю не просто читать текст, а выбрать одну из четырёх ранее полученных функций: построить её график и выявить по графику свойства логарифмической функции. Каждый член группы это делает в тетради. А затем на большом листе в клетку строят график функции. После завершения работы представитель каждой из групп выступает с защитой своей работы.

Задание группам. Обобщите свойства функции для а > 1 и 0 < a < 1 (Приложение №3)


Ось Оу является вертикальной асимптотой графика логарифмической функции и в случае, когда a>1 , и в случае, когда 0.

График функции проходит через точку с координатами (1;0)

Задание группам. Докажите, что показательная и логарифмическая функции взаимно обратны.

Ученики в одной системе координат изображают график логарифмической и показательной функции

Рассмотрим одновременно две функции: показательную у = а х и логарифмическую у = log a х .

На рис.2 схематически изображены графики функций у = а х и у = log a х в случае, когда a>1 .

На рис.3 схематически изображены графики функций у = а х и у = log a х в случае, когда 0 < a < 1.

Справедливы следующие утверждения.

  • График функции у = log a х симметричен графику функции у = аx относительно прямой у = х .
  • Множеством значения функции у = а х является множество у>0 , а областью определения функции у = log a х является множество х>0.
  • Ось Ох является горизонтальной асимптотой графика функции у = а х , а ось Оу является вертикальной асимптотой графика функции у = log a х.
  • Функция у = а х возрастает при а>1 и функция у = log a х также возрастает при а>1. Функция у = а х убывает при 0<а<1 и функция у = log a х также убывает при 0<а<1

Поэтому показательная у = а х и логарифмическая у = log a х функции взаимно обратны.

График функции у = log a х называют логарифмической кривой, хотя на самом деле нового названия можно было не придумывать. Ведь это та же экспонента, что служит графиком показательной функции, только по-другому расположенная на координатной плоскости.

Стадия рефлексии . Предварительное подведение итогов.

Вернемся к вопросам, рассмотренным в начале урока, и обсудим полученные результаты . Посмотрим, может быть, наше мнение после работы изменилось.

Учащиеся в группах сопоставляют свои предположения с информацией, полученной в ходе работы с учебником, построения графиков функций и описаний их свойств, вносят в таблицу изменения, делятся мыслями с классом, обсуждают ответы на каждый вопрос.

Стадия вызова.

Как вы думаете, в каких случаях, при выполнении каких заданий можно применить свойства логарифмической функции?

Предполагаемые ответы учащихся: решения логарифмических уравнений, неравенств, сравнения числовых выражений, содержащих логарифмы, построения, преобразования и исследования более сложных логарифмических функций.

Стадия осмысления содержания .

Работа на распознавание графиков логарифмических функций, нахождение области определения, определение монотонности функций. (Приложение №4)

Ответы .

1 2 3 4 5 6 7
1)а, 2)б, 3)в 1)а, 2)в, 3)а а, в в В, С а)< б) > а)<0 б) <0

Чтобы расширить знания по изучаемому вопросу, обучающимся предлагается текст «Применение логарифмической функции в природе и технике». (Приложение №5) Используем технологический прием «Кластер» для сохранения интереса к теме.

«Находит ли эта функция применение в окружающем нас мире?», ответим на этот вопрос после работы над текстом о логарифмической спирали.

Составление кластера «Применение логарифмической функции». Ученики работают в группах, составляя кластеры. Затем происходит защита кластеров, обсуждение их.

Пример кластера.

Рефлексия

  • О чем вы не имели представления до сегодняшнего урока, и что теперь вам стало ясно?
  • Что нового вы узнали о логарифмической функции и ее приложениях?
  • С какими трудностями вы столкнулись при выполнении заданий?
  • Выделите тот вопрос, который для вас оказался менее понятным.
  • Какая информация вас заинтересовала?
  • Составьте синквейн «логарифмическая функция»
  • Оцените работу своей группы (Приложение №6 «Лист оценки работы группы»)

Синквейн.

  1. Логарифмическая функция
  2. Неограниченная, монотонная
  3. Исследовать, сравнивать, решать неравенства
  4. Свойства зависят от величины основания логарифмической функции
  5. Экспонента

Домашнее задание: § 4 стр.240-243, № 69-75 (четные)

Литература:

  1. Азевич А.И. Двадцать уроков гармонии: Гуманитарно-математический курс. - М. : Школа-Пресс,1998.-160 с.: ил. (Библиотека журнала «Математика в школе». Вып. 7.)
  2. Заир-Бек С.И. Развитие критического мышления на уроке: пособие для учителей общеобразоват. учреждений. – М. Просвещение, 2011. – 223 с.
  3. Колягин Ю.М. Алгебра и начала анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профильный уровни. – М.: Просвещение, 2010.
  4. Корчагин В.В. ЕГЭ-2009. Математика. Тематические тренировочные задания. – М.: Эксмо, 2009.
  5. ЕГЭ-2008. Математика. Тематические тренировочные задания/ Корешкова Т.А. и др.. – М.: Эксмо, 2008.

Понятие логарифмической функции

Для начала вспомним, что же вообще такое логарифм.

Определение 1

Логарифмом числа $b\in R$ по основанию $a$ ($a>0,\ a\ne 1$) называется число $c$, в которое нужно возвести число $a$, чтобы получить число $b$.

Рассмотрим показательную функцию $f\left(x\right)=a^x$, где $a >1$. Эта функция возрастает, непрерывна и отображает действительную ось на интервал $(0,+\infty)$. Тогда, по теореме о существовании обратной непрерывной функции, у нее в множестве $Y=(0,+\infty)$ существует обратная функция $x=f^{-1}(y)$, которая также непрерывна и возрастает в $Y$ и отображает интервал $(0,+\infty)$ на всю действительную ось. Эту обратную функцию называют логарифмической функцией по основанию $a\ (a >1)$ и обозначается $y={{log}_a x\ }$.

Теперь рассмотрим показательную функцию $f\left(x\right)=a^x$, где $0

Таким образом, мы определили логарифмическую функцию при всех возможных значениях основания $a$. Рассмотрим далее два этих случая отдельно.

1%24"> Функция $y={{log}_a x\ },\ a >1$

Рассмотрим свойства данной функции.

    С осью $Oy$ пересечений нет.

    Функция положительна, при $x\in (1,+\infty)$ и отрицательна, при $x\in (0,1)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    Функция возрастает на всей области определения;

    $y^{""}=-\frac{1}{x^2lna}$;

    \[-\frac{1}{x^2lna}Функция выпукла на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=-\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=+\infty ,\ $;

    График функции (Рис. 1).

Рисунок 1. График функции $y={{log}_a x\ },\ a >1$

Функция $y={{log}_a x\ }, \ 0

Рассмотрим свойства данной функции.

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, ${{log}_a x\ }=0,\ x=1.$ Пересечение с осью $Ox$: (1,0).

    Функция положительна, при $x\in (0,1)$ и отрицательна, при $x\in (1,+\infty)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    \[\frac{1}{xlna}=0-корней\ нет\]

    Точек максимума и минимума нет.

    $y^{""}=-\frac{1}{x^2lna}$;

    Промежутки выпуклости и вогнутости:

    \[-\frac{1}{x^2lna}>0\]

    График функции (Рис. 2).

Примеры исследования и построения логарифмических функций

Пример 1

Исследовать и построить график функции $y=2-{{log}_2 x\ }$

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, $2-{{log}_2 x\ }=0,\ x=4.$ Пересечение с осью $Ox$: (4,0).

    Функция положительна, при $x\in (0,4)$ и отрицательна, при $x\in (4,+\infty)$

    $y"=-\frac{1}{xln2}$;

    Точки минимума и максимума:

    \[-\frac{1}{xln2}=0-корней\ нет\]

    Точек максимума и минимума нет.

    Функция убывает на всей области определения;

    $y^{""}=\frac{1}{x^2ln2}$;

    Промежутки выпуклости и вогнутости:

    \[\frac{1}{x^2ln2} >0\]

    Функция вогнута на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=+\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=-\infty ,\ $;

Рисунок 3.

Логарифмическая функция базируется на понятии логарифма и свойства показательной функции , где (основание степени а больше нуля и не равно единице).

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Примеры:

Напомним основное правило : чтобы получить число, стоящее под логарифмом, необходимо основание логарифма возвести в степень - значение логарифма:

Напомним важные особенности и свойства показательной функции.

Рассмотрим первый случай, когда основание степени больше единицы: :

Рис. 1. График показательной функции, основание степени больше единицы

Такая функция монотонно возрастает на всей своей области определения.

Рассмотрим второй случай, когда основание степени меньше единицы :

Рис. 2. График показательной функции, основание степени меньше единицы

Такая функция монотонно убывает на всей своей области определения.

В любом случае, показательная функция монотонна, принимает все положительные значения и, в силу своей монотонности, каждое положительное значение достигает при единственном значении аргумента. То есть, каждое конкретное значение функция достигает при единственном значении аргумента , корнем уравнения и есть логарифм:

По сути, мы получили обратную функцию. Прямая функция - это когда у нас есть независимая переменная х (аргумент), зависимая переменная у (функция), мы задали значение аргумента и по нему получаем значение функции. Обратная функция: пусть независимой переменной будет у, ведь мы уже оговорили, что каждому положительному значению у соответствует единственное значение х, определение функции соблюдается. Тогда х становится зависимой переменной.

Для монотонной прямой функции существует обратная функция . Суть функциональной зависимости не изменится, если мы введем переобозначение:

Получаем:

Но нам привычнее обозначать независимую переменную за х, а зависимую - за у:

Таким образом, мы получили логарифмическую функцию.

Используем общее правило получения обратной функции для конкретной показательной функции .

Заданная функция монотонно возрастает (согласно свойствам показательной функции), значит, существует обратная ей функция. Напоминаем, что для ее получения необходимо выполнить два действия:

Выразить х через у:

Поменять местами х и у:

Итак, получили функцию, обратную заданной: . Как известно, графики прямой и обратной функции симметричны относительно прямой у=х. проиллюстрируем:

Рис. 3. Графики функций и

Данная задача решается аналогично и справедлива для любого основания степени.

Решим задачу при

Заданная функция монотонно убывает, значит, существует обратная ей функция. Получим ее:

Выразить х через у:

Поменять местами х и у:

Итак, получили функцию, обратную заданной: . Как известно, графики прямой и обратной функции симметричны относительно прямой у=х. проиллюстрируем:

Рис. 4. Графики функций и

Заметим, что мы получили логарифмические функции как обратные к показательным.

У прямой и обратной функций есть много общего, но есть и отличия. Рассмотрим это подробнее на примере функций и .

Рис. 5. Графики функций (слева) и (справа)

Свойства прямой (показательной) функции:

Область определения: ;

Область значений: ;

Функция возрастает;

Выпукла вниз.

Свойства обратной (логарифмической) функции:

Область определения: ;