Краткая история космонавтики. Развитие космонавтики. История развития космонавтики в России. Технические проблемы полета

Пожалуй, развитие космонавтики берёт своё начало в фантастике: людям всегда хотелось летать — не только в воздухе, но и по бескрайним космическим просторам. Как только люди убедились, что земная ось не способна налететь на небесный купол и пробить его, самые пытливые умы начали задаваться вопросом — а что же там, выше? Именно в литературе можно встретить немало упоминаний всевозможных способов отрыва от Земли: не только природные явления типа урагана, но и вполне конкретные технические средства — воздушные шары, сверхмощные пушки, ковры-самолёты, ракеты и прочие костюмы-суперджеты. Хотя первым более или менее реалистичным описанием лётного средства можно назвать миф об Икаре и Дедале.


Постепенно из полёта подражательного (то есть полёта, основанного на подражании птицам) человечество перешло к полёту, основанному на математике, логике и законах физики. Значительная работа авиаторов в лице братьев Райт, Альберта Сантос-Дюмона, Гленна Хаммонда Кёртиса лишь укрепили веру человека в то, что полёт возможен, и рано или поздно холодные мерцающие точки на небе станут ближе, и вот тогда…

Первые упоминания о космонавтике как о науке начались в 30-х годах двадцатого века. Сам термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику». На родине, в Польше, его трудами научное сообщество не заинтересовалось, зато интерес проявили в России, куда автор и переехал впоследствии. Позже появились другие теоретические работы и даже первые эксперименты. Как наука космонавтика сформировалась лишь в середине 20 века. И кто бы что ни говорил, а дорогу в космос открыла наша Родина.

Основоположником космонавтики считается Константин Эдуардович Циолковский. Когда-то он говорил: «Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет ». Позже, в1883 году, он высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. Но было бы неверно не упомянуть такого человека, как Николай Иванович Кибальчич, который выдвинул саму идею возможности построения ракетного летательного аппарата.

В 1903 году Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», где он приходит к выводу, что ракеты на жидком топливе могут вывести человека в космос. Расчёты Циолковского показали, что полёты в космос — дело ближайшего будущего.

Чуть позже к работам Циолковского добавились труды зарубежных ракетостроителей: в начале 20-х годов немецкий учёный Герман Оберт также изложил принципы межпланетного полёта. В середине 20-х американец Роберт Годдард начал разрабатывать и построил успешный прототип жидкостного ракетного двигателя.

Труды Циолковского, Оберта и Годдарда стали своеобразным фундаментом, на котором выросло ракетостроение и, позднее, вся космонавтика. Основная научно-исследовательская деятельность велась в трёх странах: в Германии, США и СССР. В Советском Союзе исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). На их базе в 30-х годах был создан Реактивный институт (РНИИ).

В Германии работали такие специалисты, как Йоханнес Винклер и Вернер фон Браун. Их исследования в области реактивных двигателей дали мощный толчок ракетостроению после второй мировой войны. Винклер долго не прожил, а фон Браун переехал в США и долгое время был самым настоящим отцом космической программы Соединённых Штатов.

В России же дело Циолковского продолжил другой великий русский учёный, Сергей Павлович Королёв.

Именно он создал группу изучения реактивного движения и именно в ней создали и успешно запустили первые отечественные ракеты — ГИРД 9 и 10.

О технологиях, людях, ракетах, развитии двигателей и материалов, решённых проблемах и проделанном пути можно написать столько, что статья получится длиннее расстояния от Земли до Марса, так что опустим часть подробностей и перейдём к самой интересной части — практической космонавтике.

4 октября 1957 года человечество совершило первый успешный запуск космического спутника. Впервые творение рук человеческих проникло за пределы земной атмосферы. В этот день весь мир был поражён успехами советской науки и техники.

Что было доступно человечеству в 1957 году из вычислительной техники? Ну, стоит отметить, что в 1950-х в СССР были созданы первые вычислительные машины, а только в 1957 году в США появился первый компьютер на базе транзисторов (а не радиоламп). Ни о каких гига-, мега- и даже килофлопсах речи не шло. Типичный компьютер того времени занимал пару комнат и выдавал «лишь» пару тысяч операций в секунду (ЭВМ Стрела).

Прогресс космической отрасли был колоссален. Всего за несколько лет точность систем управления ракет-носителей и космических аппаратов выросла настолько, что из погрешности в 20-30 км при выводе на орбиту в 1958 году человек сделал шаг в посадку аппарата на Луне в пятикилометровый радиус к середине 60-х.

Дальше — больше: в 1965 году стало возможным передать на Землю фотографии с Марса (а это расстояние в более чем 200 000 000 километров), а уже в 1980 году — с Сатурна (расстояние — 1 500 000 000 километров!). Говоря о Земле — сейчас совокупность технологий позволяет получать актуальную, достоверную и детальную информацию о природных ресурсах и состоянии окружающей среды

Вместе с освоением космоса шло развитие всех «попутных направлений» — космической связи, телевещания, ретрансляции, навигации и так далее. Спутниковые системы связи стали охватывать практически весь мир, делая возможной двустороннюю оперативную связь с любыми абонентами. Сейчас спутниковый навигатор есть в любой машине (даже в игрушечной), а ведь тогда существование подобного казалось чем-то невероятным.

Во второй половине 20 века началась эра пилотируемых полётов. В 1960-1970-х годах советские космонавты продемонстрировали способность человека работать вне космического корабля, а с 1980-1990-х гг люди стали жить и работать в условиях невесомости чуть ли не годами. Понятное дело, что каждое такое путешествие сопровождалось множеством всевозможных экспериментов — технических, астрономических и так далее.

Огромный вклад в развитие передовых технологий внесли проектирование, создание и использование сложных космических систем. Автоматические космические аппараты, отправляемые в космос (в том числе к другим планетам), по сути дела, являются роботами, которыми управляют с Земли с помощью радиокоманд. Необходимость создания надёжных систем для решения подобных задач привела к более полному пониманию проблемы анализа и синтеза сложных технических систем. Сейчас такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности.

Взять, к примеру, погоду — привычное дело, в мобильных аппсторах для её вывода существуют десятки и даже сотни приложений. Но где с завидной периодичностью брать снимки облачного покрова Земли, не с самой Земли же? ;) Вот-вот. Сейчас же почти все страны мира для информации о погоде используют космические метеоданные.Не так фантастически, как 30-40 лет назад звучат слова «космическая кузница». В условиях невесомости можно организовать такое производство, какое просто неосуществимо (или не выгодно) разворачивать в условиях земной гравитации. Например, состояние невесомости можно использовать для получения сверхтонких кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов.


Картинки из моей статьи о производстве процессоров

В отсутствие гравитации свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Интересные посты с Хабра: habrahabr.ru/post/170865 + habrahabr.ru/post/188286
На данный момент во всём мире существует (точнее, функционирует) более десятка космодромов с уникальными наземными автоматизированными комплексами, а также испытательными станциями и всевозможными сложными средствами подготовки к пуску космических аппаратов и ракетоносителей. В России известными на весь мир являются космодромы «Байконур» и «Плесецк», ну и, пожалуй, «Свободный», с которого периодически осуществляются экспериментальные запуски.

В общем… уже сейчас в космосе делается столько всего — иной раз что-нибудь расскажут, не поверишь:)

ПОНАЕХАЛИ!

Москва, метро ВДНХ — с какой стороны ни посмотри, а памятник «Покорителям космоса» нельзя не заметить.

Но не многие знают, что в цокольной части 110-метрового монумента находится интереснейший музей космонавтики, в котором можно во всех подробностях узнать об истории науки: там вам и «Белка» со «Стрелкой», и Гагарин с Терешковой, и скафандры космонавтов с луноходами…

В музее находится (выполненный в миниатюре) Центр управления полётами, где можно наблюдать Международную космическую станцию в реальном времени и осуществлять переговоры с экипажем. Интерактивная кабина «Буран» с системой подвижности и панорамным стереоизображением. Интерактивный познавательный и обучающий класс, выполненный в виде кают. В специальных зонах размещены интерактивные экспонаты, которые включают в себя тренажёры, идентичные тренажёрам в Центре подготовки космонавтов имени Ю. А. Гагарина: тренажёр транспортного космического корабля сближения и стыковки, виртуальный тренажёр международной космической станции, тренажёр пилота поискового вертолета. Ну и, конечно же, куда без всяких кино- и фотоматериалов, архивных документов, личных вещей деятелей ракетно-космической отрасли, предметов нумизматики, филателии, филокартии и фалеристики, произведений изобразительного и декоративно-прикладного искусства…

Суровая реальность

Во время написания этой статьи было приятно освежить в памяти историю, но сейчас всё как-то не так оптимистично, что ли — совсем недавно мы были супербизонами и лидерами космического пространства, а сейчас даже спутник вывести на орбиту не можем… Тем не менее, мы живём в очень интересное время — если раньше малейшие технические продвижения шли годами и десятилетиями, то сейчас технологии развиваются значительно стремительней. Взять тот же интернет — ещё не забыты те времена, когда еле-еле открывались WAP-сайты на двухцветных дисплейчиках телефонов, а сейчас мы можем откуда угодно делать на телефоне (в котором и пикселей-то не видно) что угодно. ЧТО УГОДНО. Пожалуй, лучшим завершением данной статьи будет известное выступление американского комика Louis C. K, «Всё превосходно, но все недовольны»:

Космос жив! Космос не может быть мертв. Есть много инновационных проектов, разрабатывающихся по всему миру, которые должны расширить наше понимание Вселенной. Они используют невероятные технологии, но многим из них нужно еще много времени на реализацию. Хотя в астрономических масштабах это совсем не много.

Когда в NASA началось существенное сокращение бюджета, когда закончилась космическая гонка, когда развалился СССР - надежды людей на освоение космоса по всему миру треснули по швами. Но силами частных компаний и инновационных прорывов космических агентств всего мира космос все же будет освоен. Есть масса проектов, которые заставляют двигаться прогресс в сфере планетарной науки, освоения глубокого космоса и поиска внеземных форм жизни.


WorldView-3 предлагает чрезвычайно детальные изображения Земли. Он был создан компанией DigitalGlobe, чьи спутники использовались Google Earth. В настоящее время у компании вокруг Земли вращается пять спутников. WorldView-3 весит 2 тонны, имеет 6 метров в высоту и сканирует 120 000 квадратных километров каждый день. Уровень детализации варьируется от 40 до 20 сантиметров, что позволяет людям видеть отдельные растения или различать марку автомобиля. Также спутник собирает данные о сельскохозяйственных культурах и помогает определить, каким растениям не хватает воды, а какие уже созрели. Исследователи сопоставляют снимки и возможные сценарии развития. WorldView-3 получил название «суперкомпьютер среди спутников».

2. Solar Probe Plus


Этот космический аппарат NASA размером с небольшой автомобиль будет запущен в 2018 году. Среди его задач будет изучение атмосферы Солнца, причем практически вплотную - до 2 миллионов километров от светила. Аппарат обойдет Солнце 24 раза. Первый оборот состоится спустя 2 месяца после запуска на расстоянии 7 миллионов километров от Солнца, а после этого начнется сближение. В конечном счете аппарат подойдет к Солнцу ближе, чем Меркурий. Миссия продлится три года. Зонд оснащен специальным тепловым щитом из композитного углерода, который должен будет защищать его от температуры до 2550 градусов по Цельсию.

3. Батарея для глубокого космоса


Ни одно космическое агентство не отказалось бы от топливного элемента, который можно было бы использовать в ходе миссий . Новый накопитель энергии необходим для прогресса в исследованиях NASA, поэтому организация совсем недавно заключила четыре контракта на его разработку. Хранение энергии критично для миссий на астероиды, Марс или за его пределы. Предложения по этому проекту делают разнообразные центры разработки NASA, правительственные исследовательские центры и академические институты.


EmDrive - это экспериментальная технология двигательной установки, разработка которой находится в ранней стадии. Была создана Робертом Шоером в 2006 году, но в этом году установкой заинтересовалось NASA. Эксперимент, проведенный Гарольдом Уайтом, показал, что , хотя никто и не знает, как. Исследователи всего мира начали делать собственные версии двигателя.

EmDrive - это двигатель на микроволновой тяге с питанием от солнечной электроэнергии, который может быть запущен в глубокий космос без жидкого топлива и разогнать космический аппарат до скорости, намного превышающей доступную сегодня. На самом деле никто не знает, как этот двигатель работает - по сути, он нарушает закон сохранения импульса. Есть мнение, что двигатель работать не будет, поскольку в эксперименте закралась ошибка.

5. Сообщения Hello Kitty


Япония пытается заинтересовать детей и студентов в изучении астрофизики, посылая Hello Kitty в космос на спутнике и принимая отправленные игрушкой сообщения на Земле. Одна из целей проекта - привлечь инвестиции частных компаний в спутники. Поскольку Hello Kitty является одним из самых популярных персонажей в Японии, ее культурная популярность поможет повысить осведомленность о космической технике. Sanrio, материнская компания Hello Kitty, также проводит конкурс, который позволит людям отправлять сообщения своим близким прямо из космоса.

6. «Розетта»


Охотник за кометами «Розетта» на орбите кометы, направляющейся к Солнцу со скоростью 40 000 километров в час. Космический корабль путешествовал к комете 10 лет, чтобы спустить небольшой исследовательский аппарат на ее поверхность в ноябре и сделать забор материала кометы. Цель судна - понять, как планеты могли быть сформированы из комет.

7. Японский космический лифт


Корпорация Obayashi, расположенная в Токио, планирует построить к 2050 году космическую станцию, которая будет на высоте 36 000 километров над Землей. Компания планирует отправлять туристов вверх на лифте из углеродных нанотрубок со скоростью около 200 километров в час (путешествие займет примерно неделю) и питать все устройство солнечными батареями на космической станции, плавающей в качестве противовеса чуть выше. Obayashi говорит, что понятия не имеет, сколько будет стоить такой проект, но работает над ним.


Tethers Unlimited заключила контракт на 500 000 долларов на разработку средства под названием SpiderFab, которое будет использовать 3D-принтеры для создания структур, для помощи нам в поиске внеземной жизни. Основной задачей SpiderFab будет избавить нас от необходимости отправлять что-либо с Земли - все будет собираться прямо в космосе.

3D-печать предлагает массу выгодных преимуществ для освоения космоса: снижение времени путешествий, стоимости, отходов, увеличение настраиваемости и подгонки размеров частей. Не хватало только материалов. NASA разработало 3D-принтер, который может выбирать между различными типами сплавов для печати частей космических аппаратов. SpaceX недавно напечатала главный клапан окислителя для одной из своих ракет с помощью такого принтера. Компания сообщила, что будет использовать технологию в течение трех лет и скоро попытается напечатать двигательную камеру.


Космический самолет Skylon, разработанный британским инженером, может использоваться для самых разных целей, от экстренного реагирования до космический миссий. Принцип посадки и взлета Skylon аналогичен обычному самолету - за исключением того, что ему нужна большая взлетная полоса - но двигатели работают на жидком кислороде и водороде. Команда изобретателей утверждает, что Skylon будет готов к полетам в 2018 году.

10. Напечатанные на 3D-принтерах космические телескопы


Один из аэрокосмических инженеров NASA работает над строительством космического телескопа полностью из 3D-печатных частей. Используя быстрое прототипирование для 3D-печати с использованием металла, NASA утверждает, что может завершить один проект всего за три месяца. трудно изготавливать, поэтому 3D-печать всех частей - от зеркал до камеры - поможет преодолеть материальные и операционные трудности.

Еще до начала эры освоения пространства невесомости люди утверждали, что ученые могут изменить не только Землю, но и научиться управлять погодой. Развитие космоса , серьезно повлияло на развитее Земли.

Развитие космоса в СССР связано с именами М.К. Тихонравова и С. П. Королева. В 1945 году была создана группа специалистов РНИИ, которая занималась разработкой проекта первого в мире пилотируемого ракетного аппарата. Планировалось отправить на борту двух космонавтов, для изучения верхних слоев атмосферы.

Космос - уникален тем, что мы ничего о нем не знали длительное время, раньше все, что не могли люди объяснить, казалось нам чем-то из области фантастики. Сегодня увидеть планету с космоса или процессы, происходящие на Солнце, мы можем благодаря именно исследованиям ученым. Сорок с небольшим лет назад был запущен первый искусственный спутник Земли, для космической эры, это совсем не срок. Однако развитие космоса и история уже содержит не одну серию уникальных достижений и открытий, первые из которых делал Советский Союз, США и другие страны.

Сегодня спутников, находящихся на орбите Земли насчитывается тысячи, они уже были на Марсе, Венере и на Луне.

Первый человек в космосе

Одно из важнейших событий, которое содержит история развития космоса и за которым наблюдал весь мир - полет первого человека в космос, осуществленный 12 апреля 1961 года. В пространство невесомости посчастливилось отправиться юному смоленскому парню с невероятной харизмой Юрию Алексеевичу Гагарину. С того момента открылись большие перспективы развития космоса . Затем улетел экипаж, состоящий из нескольких человек, первая женщина попала в космос, создали орбитальную станцию «Мир». Для создания оптимальных условий полета и нахождения в космосе требовалось решить множество задач, которые в дальнейшем послужили толчком в развитии небесной и теоретической механике.

Развитие космоса в России связано с производством инновационных вычислительных машин, что послужило зарождению новой дисциплины - динамике космического полета. Телевещание, космическая связь, системы навигации вышли на новый уровень и уже в 1965 году мы увидели первые фотографии планеты Марс, Сатурн. Без спутниковых навигационных систем сегодня нельзя представить себе транспортную отрасль и работу военной техники. Дело это весьма познавательное развитие космоса в каждой школьной программе включенная такая тема.

Сегодня есть увлекательные методичные материалы «развитие речи космос подготовительная группа », позволяющие получить основную информацию о планетах, звездах, Луне, Солнце. Дети обучаются и проявляют интерес к вопросам о Вселенной. Деткам постарше предлагается освоить «развитие речи космос средняя группа », где уже более научным языком объясняются основные понятия.

Исследования в космосе вывели на новый уровень медицину. Нужно изучить реакцию организма на состояние невесомости, его нервной системы. Чтобы создать максимально комфортные условия жизнеобеспечения и знать, какие задания можно поручать человеку, который находится длительное время в космосе. Определяющую роль играет использование космических ресурсов в создании информационного пространства России, внедрения сети Интернет. Качественный обмен информации сегодня не менее важен, чем обмен оружием. Именно так правильно формируется развитие представлений о космосе .

Пилотируемая космонавтика преследует исключительно мирные цели: грамотное использование ресурсов Земли, решение проблем, связанных с экологическим мониторингом океана и суши, развитее науки.

Пожалуй, развитие космонавтики берёт своё начало в фантастике: людям всегда хотелось летать — не только в воздухе, но и по бескрайним космическим просторам. Как только люди убедились, что земная ось не способна налететь на небесный купол и пробить его, самые пытливые умы начали задаваться вопросом — а что же там, выше? Именно в литературе можно встретить немало упоминаний всевозможных способов отрыва от Земли: не только природные явления типа урагана, но и вполне конкретные технические средства — воздушные шары, сверхмощные пушки, ковры-самолёты, ракеты и прочие костюмы-суперджеты. Хотя первым более или менее реалистичным описанием лётного средства можно назвать миф об Икаре и Дедале.


Постепенно из полёта подражательного (то есть полёта, основанного на подражании птицам) человечество перешло к полёту, основанному на математике, логике и законах физики. Значительная работа авиаторов в лице братьев Райт, Альберта Сантос-Дюмона, Гленна Хаммонда Кёртиса лишь укрепили веру человека в то, что полёт возможен, и рано или поздно холодные мерцающие точки на небе станут ближе, и вот тогда…


Первые упоминания о космонавтике как о науке начались в 30-х годах двадцатого века. Сам термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику». На родине, в Польше, его трудами научное сообщество не заинтересовалось, зато интерес проявили в России, куда автор и переехал впоследствии. Позже появились другие теоретические работы и даже первые эксперименты. Как наука космонавтика сформировалась лишь в середине 20 века. И кто бы что ни говорил, а дорогу в космос открыла наша Родина.

Основоположником космонавтики считается Константин Эдуардович Циолковский. Когда-то он говорил: «Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет ». Позже, в1883 году, он высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. Но было бы неверно не упомянуть такого человека, как Николай Иванович Кибальчич, который выдвинул саму идею возможности построения ракетного летательного аппарата.


В 1903 году Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», где он приходит к выводу, что ракеты на жидком топливе могут вывести человека в космос. Расчёты Циолковского показали, что полёты в космос — дело ближайшего будущего.

Чуть позже к работам Циолковского добавились труды зарубежных ракетостроителей: в начале 20-х годов немецкий учёный Герман Оберт также изложил принципы межпланетного полёта. В середине 20-х американец Роберт Годдард начал разрабатывать и построил успешный прототип жидкостного ракетного двигателя.


Труды Циолковского, Оберта и Годдарда стали своеобразным фундаментом, на котором выросло ракетостроение и, позднее, вся космонавтика. Основная научно-исследовательская деятельность велась в трёх странах: в Германии, США и СССР. В Советском Союзе исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). На их базе в 30-х годах был создан Реактивный институт (РНИИ).

В Германии работали такие специалисты, как Йоханнес Винклер и Вернер фон Браун. Их исследования в области реактивных двигателей дали мощный толчок ракетостроению после второй мировой войны. Винклер долго не прожил, а фон Браун переехал в США и долгое время был самым настоящим отцом космической программы Соединённых Штатов.

В России же дело Циолковского продолжил другой великий русский учёный, Сергей Павлович Королёв.


Именно он создал группу изучения реактивного движения и именно в ней создали и успешно запустили первые отечественные ракеты — ГИРД 9 и 10.


О технологиях, людях, ракетах, развитии двигателей и материалов, решённых проблемах и проделанном пути можно написать столько, что статья получится длиннее расстояния от Земли до Марса, так что опустим часть подробностей и перейдём к самой интересной части — практической космонавтике.

4 октября 1957 года человечество совершило первый успешный запуск космического спутника. Впервые творение рук человеческих проникло за пределы земной атмосферы. В этот день весь мир был поражён успехами советской науки и техники.


Что было доступно человечеству в 1957 году из вычислительной техники? Ну, стоит отметить, что в 1950-х в СССР были созданы первые вычислительные машины, а только в 1957 году в США появился первый компьютер на базе транзисторов (а не радиоламп). Ни о каких гига-, мега- и даже килофлопсах речи не шло. Типичный компьютер того времени занимал пару комнат и выдавал «лишь» пару тысяч операций в секунду (ЭВМ Стрела).

Прогресс космической отрасли был колоссален. Всего за несколько лет точность систем управления ракет-носителей и космических аппаратов выросла настолько, что из погрешности в 20-30 км при выводе на орбиту в 1958 году человек сделал шаг в посадку аппарата на Луне в пятикилометровый радиус к середине 60-х.

Дальше — больше: в 1965 году стало возможным передать на Землю фотографии с Марса (а это расстояние в более чем 200 000 000 километров), а уже в 1980 году — с Сатурна (расстояние — 1 500 000 000 километров!). Говоря о Земле — сейчас совокупность технологий позволяет получать актуальную, достоверную и детальную информацию о природных ресурсах и состоянии окружающей среды

Вместе с освоением космоса шло развитие всех «попутных направлений» — космической связи, телевещания, ретрансляции, навигации и так далее. Спутниковые системы связи стали охватывать практически весь мир, делая возможной двустороннюю оперативную связь с любыми абонентами. Сейчас спутниковый навигатор есть в любой машине (даже в игрушечной), а ведь тогда существование подобного казалось чем-то невероятным.

Во второй половине 20 века началась эра пилотируемых полётов. В 1960-1970-х годах советские космонавты продемонстрировали способность человека работать вне космического корабля, а с 1980-1990-х гг люди стали жить и работать в условиях невесомости чуть ли не годами. Понятное дело, что каждое такое путешествие сопровождалось множеством всевозможных экспериментов — технических, астрономических и так далее.


Огромный вклад в развитие передовых технологий внесли проектирование, создание и использование сложных космических систем. Автоматические космические аппараты, отправляемые в космос (в том числе к другим планетам), по сути дела, являются роботами, которыми управляют с Земли с помощью радиокоманд. Необходимость создания надёжных систем для решения подобных задач привела к более полному пониманию проблемы анализа и синтеза сложных технических систем. Сейчас такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности.


Взять, к примеру, погоду — привычное дело, в мобильных аппсторах для её вывода существуют десятки и даже сотни приложений. Но где с завидной периодичностью брать снимки облачного покрова Земли, не с самой Земли же? ;) Вот-вот. Сейчас же почти все страны мира для информации о погоде используют космические метеоданные.

Не так фантастически, как 30-40 лет назад звучат слова «космическая кузница». В условиях невесомости можно организовать такое производство, какое просто неосуществимо (или не выгодно) разворачивать в условиях земной гравитации. Например, состояние невесомости можно использовать для получения сверхтонких кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов.



Картинки из моей статьи о производстве процессоров

В отсутствие гравитации свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Интересные посты с Хабра: habrahabr.ru/post/170865/ + habrahabr.ru/post/188286/

На данный момент во всём мире существует (точнее, функционирует) более десятка космодромов с уникальными наземными автоматизированными комплексами, а также испытательными станциями и всевозможными сложными средствами подготовки к пуску космических аппаратов и ракетоносителей. В России известными на весь мир являются космодромы «Байконур» и «Плесецк», ну и, пожалуй, «Свободный», с которого периодически осуществляются экспериментальные запуски.


В общем… уже сейчас в космосе делается столько всего — иной раз что-нибудь расскажут, не поверишь:)

ПОНАЕХАЛИ!

Москва, метро ВДНХ — с какой стороны ни посмотри, а памятник «Покорителям космоса» нельзя не заметить.


Но не многие знают, что в цокольной части 110-метрового монумента находится интереснейший музей космонавтики, в котором можно во всех подробностях узнать об истории науки: там вам и «Белка» со «Стрелкой», и Гагарин с Терешковой, и скафандры космонавтов с луноходами…

В музее находится (выполненный в миниатюре) Центр управления полётами, где можно наблюдать Международную космическую станцию в реальном времени и осуществлять переговоры с экипажем. Интерактивная кабина «Буран» с системой подвижности и панорамным стереоизображением. Интерактивный познавательный и обучающий класс, выполненный в виде кают. В специальных зонах размещены интерактивные экспонаты, которые включают в себя тренажёры, идентичные тренажёрам в Центре подготовки космонавтов имени Ю. А. Гагарина: тренажёр транспортного космического корабля сближения и стыковки, виртуальный тренажёр международной космической станции, тренажёр пилота поискового вертолета. Ну и, конечно же, куда без всяких кино- и фотоматериалов, архивных документов, личных вещей деятелей ракетно-космической отрасли, предметов нумизматики, филателии, филокартии и фалеристики, произведений изобразительного и декоративно-прикладного искусства…

Суровая реальность

Во время написания этой статьи было приятно освежить в памяти историю, но сейчас всё как-то не так оптимистично, что ли — совсем недавно мы были супербизонами и лидерами космического пространства, а сейчас даже спутник вывести на орбиту не можем… Тем не менее, мы живём в очень интересное время — если раньше малейшие технические продвижения шли годами и десятилетиями, то сейчас технологии развиваются значительно стремительней. Взять тот же интернет — ещё не забыты те времена, когда еле-еле открывались WAP-сайты на двухцветных дисплейчиках телефонов, а сейчас мы можем откуда угодно делать на телефоне (в котором и пикселей-то не видно) что угодно. ЧТО УГОДНО. Пожалуй, лучшим завершением данной статьи будет известное выступление американского комика Louis C. K, «Всё превосходно, но все недовольны»:

12 апреля наша страна отметила 50 летие освоения космоса - День космонавтики. Это всенародный праздник. Для нас кажется привычным, что стартуют с Земли космические корабли. В высоких небесных далях происходят стыковки космических аппаратов. Месяцами в космических станциях живут и трудятся космонавты, уходят к другим планетам автоматические станции. Вы можете сказать “что тут особенного?”

Но ведь совсем недавно о космических полетах говорили как о фантастике. И вот 4 октября 1957 года началась новая эра – эра освоения космоса.

Конструкторы

Циолковский Константин Эдуардович -

русский ученый, который один из первых задумался о полете в космос.

Судьба и жизнь учёного необычны и интересны. Первая половина детства у Кости Циолковского была обычной, как у всех детей. Уже находясь в преклонном возрасте, Константин Эдуардович вспоминал, как ему нравилось лазить по деревьям, забираться на крыши домов, прыгать с большой высоты, чтобы испытать чувство свободного падения. Второе детство началось, когда заболев скарлатиной, почти полностью потерял слух. Глухота причиняла мальчику не только бытовые неудобства и моральные страдания. Она грозила замедлить его физическое и умственное развитие.

Костю постигло еще одно горе: умерла его мать. В семье остались отец, младший брат и неграмотная тетка. Мальчик остался предоставленным сам себе.

Лишенный из-за болезни многих радостей и впечатлений, Костя много читает, постоянно осмысливая прочитанное. Он изобретает то, что изобретено давно. Но - изобретает сам. К примеру, токарный станок. Во дворе дома крутятся на ветру построенные им ветряные мельницы, бегают против ветра парусные тележки-самоходы.

Он мечтает о космических путешествиях. Запоем читает книги по физике, химии, астрономии, математике. Понимая, что его способного, но глухого сына не примут ни в одно учебное заведение, отец решает отправить шестнадцатилетнего Костю в Москву для самообразования. Костя в Москве снимает угол и с утра до вечера сидит в бесплатных библиотеках. Отец ежемесячно присылает ему 15 - 20 рублей, Костя же, питаясь черным хлебом и запивая его чаем, тратит в месяц на еду 90 копеек! На остальные деньги покупает реторты, книги, реактивы. Последующие годы также были нелегкими. Он много натерпелся от чиновничьего равнодушия к его трудам и проектам. Болел, падал духом, но вновь собирался, производил расчеты, писал книги.

Теперь мы уже знаем, что Константин Эдуардович Циолковский - гордость России, один из отцов космонавтики, великий ученый. И с удивлением многие из нас узнают, что великий ученый не учился в школе, не имел никаких научных степеней, последние годы жил в Калуге в обыкновенном деревянном доме и уже ничего не слыша, но во всем мире теперь признан гением тот, кто первым начертал для человечества путь к иным мирам и звездам:

Идеи Циолковского были развиты Фридрихом Артуровичем Цандером и Юрием Васильевичем Кондратюком.

Все самые заветные мечты основоположников космонавтики воплотил Сергей Павлович Королев.

Фридрих Артурович Цандер (1887-1933)

Юрий Васильевич Кондратюк

Сергей Павлович Королёв

Идеи Циолковского были развиты Фридрихом Артуровичем Цандером и Юрием Васильевичем Кондратюком. Все самые заветные мечты основоположников космонавтики воплотил Сергей Павлович Королев.

В этот день был запущен первый искусственный спутник Земли. Началась космическая эра. Первый спутник Земли представлял собой блестящий шар из алюминиевых сплавов и был невелик - диаметром 58 см, весом - 83,6 кг. Аппарат имел двухметровые усы-антенны, а внутри размещались два радиопередатчика. Скорость спутника составляла 28800 км/ч. За полтора часа спутник облетел весь земной шар, а за сутки полета совершил 15 оборотов. Сейчас на земной орбите находится множество спутников. Одни используются для телерадиосвязи, другие являются научными лабораториями.

Перед учеными стояла задача - вывести на орбиту живое существо.

И дорогу в космос для человека проложили собаки. Испытания на животных начались еще в 1949 году. Первых "космонавтов" набирали в: подворотнях - первый отряд собак. Всего отловили 32 собачек.

Собак в подопытные решили взять, т.к. ученые знали, как они себя ведут, понимали особенности строения организма. Кроме того, собаки не капризны, их легко тренировать. А дворняг выбрали потому, что медики считали: они с первого дня вынуждены бороться за выживание, к тому же неприхотливы и очень быстро привыкают к персоналу. Собаки должны были соответствовать заданным стандартам: не тяжелее 6 килограммов и ростом не выше 35 см. Помня, что собакам придется "красоваться" на страницах газет, отбирали "объекты" покрасивее, постройнее и с умными мордашками. Их тренировали на вибростенде, центрифуге, в барокамере: Для космического путешествия была изготовлена герметическая кабина, которая крепилась в носовой части ракеты.

Первый собачий старт состоялся 22 июля 1951 года - дворняги Дезик и Цыган выдержали его успешно! Цыган и Дезик поднялись на 110 км, потом кабина с ними свободно падала до высоты 7 км.

С 1952 года стали отрабатывать полеты животных в скафандрах. Скафандр изготовили из прорезиненной ткани в виде мешка с двумя глухими рукавами для передних лап. К нему крепился съемный шлем из прозрачного плексигласа. Кроме того, разработали катапультную тележку, на которой и размещался лоток с собакой, а также аппаратура. Эта конструкция на большой высоте отстреливалась из падающей кабины и спускалась на парашюте.

20 августа было объявлено, что совершил мягкую посадку спускаемый аппарат и на землю благополучно возвратились собаки Белка и Стрелка. Но не только, слетали 21 серая и 19 белых мышей.

Белка и Стрелка были уже настоящими космонавтами. Чему же были обучены космонавты?

Собаки прошли все виды испытаний. Они могут довольно длительно находиться в кабине без движения, могут переносить большие перегрузки, вибрации. Животные не пугаются слухов, умеют сидеть в своем экспериментальном снаряжении, давая возможность записывать биотоки сердца, мышц, мозга, артериальное давление, характер дыхания и т.д.

По телевидению показали кадры полета Белки и Стрелки. Было хорошо видно, как они кувыркались в невесомости. И, если Стрелка относилась ко всему настороженно, то Белка радостно бесилась и даже лаяла.

Белка и Стрелка стали всеобщими любимицами. Их возили по детским садам, школам, детским домам.

До полета человека в космос оставалось 18 дней.

Мужской состав

В Советском Союзе только 5 января 1959г. было принято решение об отборе людей и подготовке их для полета в космос. Спорным был вопрос кого готовить для полета. Врачи доказывали, что только они, инженеры считали, что в космос должен лететь человек из их среды. Но выбор пал на летчиков-истребителей, потому, что они действительно из всех профессий ближе к космосу: летают на больших высотах в специальных костюмах, переносят перегрузки, имеют прыгать с парашютом, держать связь с командными пунктами. Находчивы, дисциплинированы, хорошо знают реактивные самолеты. Из 3000 летчиков-истребителей выбрали 20 человек.

Была создана специальная медицинская комиссия, преимущественно из военных врачей. Требования к космонавтам такие: во-первых, отменное здоровье с двойным–тройным запасом прочности; во-вторых, искреннее желание заняться новым и опасным делом, способность развивать в себе начала творческой исследовательской деятельности; в-третьих, отвечать требованиям по отдельным параметрам: возраст 25–30 лет, рост 165–170 см, масса 70–72 кг и не больше! Отсеивали безжалостно. Малейшее нарушение в организме, отстраняли сразу.

Руководство решило из 20 космонавтов выделить несколько человек для первого полета. 17 и 18 января 1961 г. космонавтам устроили экзамен. В результате приемная комиссия выделила шестерку для подготовки к полетам.Перед вами портреты космонавтов В неё вошли в порядке очередности: Ю.А. Гагарин, Г.С. Титов, Г.Г. Нелюбов, А.Н. Николаев, В.Ф. Быковский, П.Р. Попович. 5 апреля 1961 г. все шесть космонавтов вылетели на космодром. Выбрать первого из космонавтов равных по здоровью, подготовке, смелости было не просто. Эту задачу решали специалисты и руководитель группы космонавтов Н.П. Каманин. Им стал Юрий Алексеевич Гагарин. 9 апреля решение Государственной комиссии объявили космонавтам.

Ветераны Байконура утверждают, что в ночь на 12 апреля на космодроме никто не спал, кроме космонавтов. В 3 часа ночи 12 апреля начались заключительные проверки всех систем корабля “Восток”. Ракета освещалась мощными прожекторами. В 5.30 утра, Евгений Анатольевич Карпов поднял космонавтов. Вид у них – бодрый. Приступили к физзарядке, потом завтрак и медицинский осмотр. В 6.00 заседание Государственной Комиссии, подтверждено решение: первым в космос летит Ю.А. Гагарин. Подписывают ему полетное задание. Стоял солнечный, теплый день, вокруг в степи цвели тюльпаны. Ракета ослепительно ярко сверкала на солнце. На прощание отводилось 2-3 минуты, а прошло десять. Гагарина посадили в корабль за 2 часа до старта. В это время происходит заправка ракеты топливом, и по мере заполнения баков она “одевается” точно в снежную шубу и парит. Потом дают электропитание, проверяют аппаратуру. Один из датчиков указывает, что в крышке нет надежного контакта. Нашли… Сделали… Вновь закрыли крышку. Площадка опустела. И знаменитое гагаринское “Поехали!”. Ракета медленно, будто нехотя, изрыгая лавину огня, поднимается со старта и стремительно уходит в небо. Вскоре ракета исчезла из вида. Наступило томительное ожидание.

Женский состав

Валентина Терешкова родилась в деревне Большое Масленниково Ярославской области в крестьянской семье выходцев из Белоруссии (отец - из-под Могилёва, мать - из деревни Еремеевщина Дубровенского района). Как рассказывала сама Валентина Владимировна, в детстве она говорила с родными по-белорусски. Отец - тракторист, мать - работница текстильной фабрики. Призванный в Красную армию в 1939 году, отец Валентины погиб на Советско-финской войне.

В 1945 году девочка поступила в среднюю школу № 32 города Ярославль, семь классов которой окончила в 1953 году. Чтобы помочь семье, в 1954 году Валентина пошла работать на Ярославский шинный завод браслетчицей, одновременно поступив на учёбу в вечерние классы школы рабочей молодёжи. С 1959 года занималась парашютным спортом в Ярославском аэроклубе (выполнила 90 прыжков). Продолжив работу на текстильном комбинате «Красный Перекоп», с 1955 по 1960 годы Валентина прошла заочное обучение в техникуме лёгкой промышленности. С 11 августа 1960 года - освобождённый секретарь комитета ВЛКСМ комбината «Красный Перекоп».
В отряде космонавтов

После первых успешных полётов советских космонавтов у Сергея Королёва появилась идея запустить в космос женщину-космонавта. В начале 1962 года начался поиск претенденток по следующим критериям: парашютистка, возрастом до 30 лет, ростом до 170 сантиметров и весом до 70 килограммов. Из сотен кандидатур были выбраны пятеро: Жанна Ёркина, Татьяна Кузнецова, Валентина Пономарёва, Ирина Соловьёва и Валентина Терешкова.

Сразу после принятия в отряд космонавтов Валентину Терешкову вместе с остальными девушками призвали на срочную воинскую службу в звании рядовых.
Подготовка

В отряд космонавтов Валентина Терешкова была зачислена 12 марта 1962 года и стала проходить обучение как слушатель-космонавт 2-го отряда. 29 ноября 1962 года она сдала выпускные экзамены по ОКП на «отлично». С 1 декабря 1962 года Терешкова - космонавт 1-го отряда 1-го отдела. С 16 июня 1963 года, то есть сразу после полёта, она стала инструктором-космонавтом 1-го отряда и была на этой должности до 14 марта 1966 года.

Во время обучения она проходила тренировки на устойчивость организма к факторам космического полёта. Тренировки включали в себя термокамеру, где надо было находиться в лётном комбинезоне при температуре +70 °C и влажности 30 %, сурдокамеру - изолированное от звуков помещение, где каждая кандидатка должна была провести 10 суток.

Тренировки в невесомости проходили на МиГ-15. При выполнении специальной фигуры высшего пилотажа - параболической горки - внутри самолёта устанавливалась невесомость на 40 секунд, и таких сеансов было 3-4 за полёт. Во время каждого сеанса надо было выполнить очередное задание: написать имя и фамилию, попробовать поесть, поговорить по рации.

Особое внимание уделялось парашютной подготовке, так как космонавт перед самой посадкой катапультировался и приземлялся отдельно на парашюте. Поскольку всегда существовал риск приводнения спускаемого аппарата, проводились и тренировки по парашютным прыжкам в море, в технологическом, то есть не пригнанном по размеру, скафандре.

Савицкая Светлана Евгеньевна - космонавт России. Родилась 8 августа 1948 года в Москве. Дочь дважды Героя Советского Союза маршала авиации Евгения Яковлевича САВИЦКОГО. После окончания средней школы поступила в институт и одновременно садится за штурвал самолета. Освоила следующие типы самолетов: МиГ-15, МиГ-17, Е-33, Е-66Б. Занималась парашютной подготовкой. Установила 3 мировых рекорда в групповых прыжках с парашютом из стратосферы и 15 мировых рекордов на реактивных самолетах. Абсолютная чемпионка мира по высшему пилотажу на поршневых самолетах (1970 г.). За свои спортивные достижения в 1970 году была удостоена звания заслуженный мастер спорта СССР. В 1971 году окончила Центральную летно-техническую школу при ЦК ДОСААФ СССР, а в 1972 году - Московский авиационный институт имени Серго Орджоникидзе. После учебы работала летчиком-инструктором. С 1976 года, пройдя курс обучения в школе летчиков-испытателей, летчик-испытатель Министерства авиационной промышленности СССР. За время работы летчиком-испытателем освоила более 20 типов самолетов, имеет квалификацию «Летчик-испытатель 2-го класса». С 1980 года в отряде космонавтов (1980 Группа женщин-космонавтов № 2). Прошла полный курс подготовки к полетам в космос на кораблях типа Союз Т и орбитальной станции Салют. С 19 по 27 августа 1982 года совершила свой первый полет в космос в качестве космонавта-исследователя корабля Союз Т-7. Работала на борту орбитальной станции Салют-7. Продолжительность полета составила 7 суток 21 час 52 минуты 24 секунды. С 17 по 25 июля 1984 года совершила свой второй полет в космос в качестве бортинженера корабля Союз Т-12. Во время работы на борту орбитальной станции Салют-7 25 июля 1984 года первой из женщин совершила выход в открытый космос. Время пребывания в открытом космосе составила 3 часа 35 минут. Продолжительность космического полета составила 11 суток 19 часов 14 минут 36 секунд. За 2 рейса в космос налетала 19 суток 17 часов 7 минут. После второго космического полета работала в НПО «Энергия» (заместитель начальника отдела Главного конструктора). Имеет квалификацию инструктор-космонавт-испытатель 2-го класса. В конце 80-х годов занималась общественной работой, являлась первым заместителем председателя Советского фонда мира. С 1989 года все активнее начинает заниматься политической деятельностью. В 1989 - 1991 годах являлась народным депутатом СССР. В 1990 - 1993 годах являлась народным депутатом РФ. В 1993 году покинула отряд космонавтов, а в 1994 году ушла из НПО «Энергия» и целиком сосредоточилась на политической деятельности. Депутат Государственной думы РФ первого и второго созывов (с 1993 года; фракция КПРФ). Член Комитета по обороне. С 16 по 31 января 1996 года возглавляла Временную комиссию по контролю за электронной системой голосования. Член Центрального совета Всероссийского общественно-политического движения «Духовное наследие».

Елена Владимировна Кондакова (родилась 1957 В г. Мытищи) была третьей российской женщиной-космонавтом и первой женщиной, совершившей длительный полёт в космос. Её первый полёт в космос состоялся 4 октября 1994 года в составе экспедиции Союз ТМ-20, возвращение на Землю - 22 марта 1995 года после 5-месячного полёта на орбитальной станции «Мир». Второй полёт Кондаковой - в качестве специалиста на американском корабле Атлантис (шаттл) (англ. Space Shuttle Atlantis) в составе экспедиции Атлантис STS-84 в мае 1997 года. В отряд космонавтов её включили в 1989 году.

С 1999 г. - депутат Государственной Думы РФ от партии «Единая Россия».